zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The uncertainty principle: A mathematical survey. (English) Zbl 0885.42006
A comprehensive survey mainly devoted to various versions, generalizations, and ramifications of the uncertainty principle, and the results related to the Heisenberg inequality.

MSC:
42B10Fourier type transforms, several variables
42-02Research monographs (Fourier analysis)
26D15Inequalities for sums, series and integrals of real functions
43A25Fourier and Fourier-Stieltjes transforms on locally compact and other abelian groups
43A30Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc.
81Q10Selfadjoint operator theory in quantum theory, including spectral analysis
81S30Phase space methods in quantum mechanics
94A12Signal theory (characterization, reconstruction, filtering, etc.)
94A17Measures of information, entropy
WorldCat.org
Full Text: DOI EuDML
References:
[1] Ali, S. T. and Prugovecki, E. (1977). Systems of imprimitivity and representations of quantum mechanics in fuzzy phase space.J. Math. Phys. 18, 219--228. MR 58 #8964 · Zbl 0364.46055 · doi:10.1063/1.523259
[2] Amrein, W. O. and Berthier, A.M. (1977). On support properties ofL pfunctions and their Fourier transforms.J. Funct. Anal. 24, 258--267. MR 57 #1013 · Zbl 0355.42015 · doi:10.1016/0022-1236(77)90056-8
[3] Auscher, P. (1994). Remarks on the local Fourier bases.Wavelets: Mathematics and Applications (J. J. Benedetto and M. W. Frazier, eds.). CRC Press, Boca Raton, FL, 203--218. MR 94i:42039 · Zbl 0882.42026
[4] Auscher, P., Weiss, G., and Wickerhauser, M. V. (1992). Local sine and cosine bases of Coifman and Meyer and the construction of smooth wavelets.Wavelets: A Tutorial in Theory and Applications (C. K. Chui, ed.). Academic Press, Boston, 237--256. MR 93e:42042 · Zbl 0767.42009
[5] Barceló, J. A. and Córdoba, A. J. (1989). Band-limited functions:L pconvergence.Trans. Amer. Math. Soc. 313, 655--669. MR 90g:42017
[6] Beckner, W. (1975). Inequalities in Fourier analysis.Ann. of Math. 102, 159--182. MR 52 #6317 · Zbl 0338.42017 · doi:10.2307/1970980
[7] ----------. (1995). Pitt’s inequality and the uncertainty principle.Proc. Amer. Math. Soc. 123, 1897--1905. MR 95g:42021
[8] Benedetto, J.J. (1985). An inequality associated to the uncertainty principle.Rend. Circ. Mat. Palermo (2)34, 407--421. MR 87g:26024 · Zbl 0601.42008 · doi:10.1007/BF02844534
[9] ----------. (1985). Fourier uniqueness criteria and spectrum estimation theorems.Fourier Techniques and Applications (J. F. Price, ed.). Plenum, New York, 149--170.
[10] ----------. (1990). Uncertainty principle inequalities and spectrum estimation.Recent Advances in Fourier Analysis and Its Applications (J. S. Byrnes and J. L. Byrnes, eds.). Kluwer Acad. Publ., Dordrecht. MR 91i:94010
[11] ----------. (1994). Frame decompositions, sampling, and uncertainty principle inequalities.Wavelets: Mathematics and Applications (J. J. Benedetto and M. W. Frazier, eds.). CRC Press, Boca Raton, FL, 247--304. MR 94i:94005
[12] Benedetto, J. J. and Frazier, M. W. (eds.). (1994).Wavelets: Mathematics and Applications. CRC Press, Boca Raton, FL. · Zbl 0840.00013
[13] Benedetto, J. J., Heil, C., and Walnut, D. (1992). Uncertainty principles for time-frequency operators.Continuous and Discrete Fourier Transforms, Extension Problems, and Wiener-Hopf Equations (I. Gohberg, ed.). Birkhäuser, Basel, 1--25. MR 94a:42041
[14] Benedetto, J. J. and Walnut, D. F. (1994). Gabor frames forL 2 and related spaces.Wavelets: Mathematics and Applications (J. J. Benedetto and M. W. Frazier, eds.). CRC Press, Boca Raton, FL, 97--162. MR 94i:42040
[15] Benedicks, M. (1984). The support of functions and distributions with a spectral gap.Math. Scand. 55, 255--309. MR 86f:43006 · Zbl 0577.42008
[16] ----------. (1985). On Fourier transforms of functions supported on sets of finite Lebesgue measure.J. Math. Anal. Appl. 106, 180--183. MR 86j:42017 · Zbl 0576.42016 · doi:10.1016/0022-247X(85)90140-4
[17] Bialynicki-Birula, I. (1985). Entropic uncertainty relations in quantum mechanics.Quantum Probability and Applications III (L. Accardi and W. von Waldenfels, eds.).Lecture Notes in Math. 1136. Springer, Berlin, 90--103. MR 87b:81007
[18] Bialynicki-Birula, I. and Mycielski, J. (1975). Uncertainty relations for information entropy in wave mechanics.Comm. Math. Phys. 44, 129--132. MR 52 #7403 · doi:10.1007/BF01608825
[19] Borchi, E. and Marsaglia, S. (1985). A note on the uncertainty product of bandlimited functions.Signal Process. 9, 277--282. MR 87a:94007 · doi:10.1016/0165-1684(85)90135-5
[20] Bourgain, J. (1988). A remark on the uncertainty principle for Hilbertian bases.J. Funct. Anal. 79, 136--143. MR 89f:81025 · Zbl 0656.46016 · doi:10.1016/0022-1236(88)90033-X
[21] Bowie, P. C. (1971). Uncertainty inequalities for Hankel transforms.SIAM J. Math. Anal. 2, 601--606. MR 46 #4113 · Zbl 0235.44002 · doi:10.1137/0502059
[22] Busch, P. (1984). On joint lower bounds of position and momentum observables in quantum mechanics.J. Math. Phys. 25, 1794--1797. MR 85h:81004 · doi:10.1063/1.526357
[23] Byrnes, J. S. (1994). Quadrature mirror filters, low crest factor arrays, functions achieving optimal uncertainty principle bounds, and complete orthonormal sequences--a unified approach.Appl. Comput. Harmonic Anal. 1, 261--266. MR 95i:94004 · Zbl 0802.42023 · doi:10.1006/acha.1994.1013
[24] Chistyakov, A. L. (1976). On uncertainty relations for vector-valued operators.Teoret. Mat. Fiz. 27, 130--134; English transl.,Theor. Math. Phys. 27, 380--382. MR 56 #7615
[25] Cowling, M. G. and Price, J. F. (1983). Generalisations of Heisenberg’s inequality.Harmonic Analysis (G. Mauceri, F. Ricci, and G. Weiss, eds.).Lecture Notes in Math. 992. Springer, Berlin, 443--449. MR 86g:42002b
[26] ----------. (1984). Bandwidth versus time concentration: the Heisenberg-Pauli-Weyl inequality.SIAM J. Math. Anal. 15, 151--165. MR 86g:42002a · doi:10.1137/0515012
[27] Cowling, M. G., Price, J. F., and Sitaram, A. (1988). A qualitative uncertainty principle for semisimple Lie groups.J. Austral. Math. Soc. Ser. A 45, 127--132. MR 89d:43005 · Zbl 0675.43002 · doi:10.1017/S144678870003233X
[28] Daubechies, I. (1992).Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia, PA. MR 93e:42045 · Zbl 0776.42018
[29] de Bruijn, N. G. (1967). Uncertainty principles in Fourier analysis.Inequalities (O. Shisha, ed.). Academic Press, New York, 55--71. MR 36 #3047
[30] de Jeu, M. F. E. (1994). An uncertainty principle for integral operators.J. Funct. Anal. 122, 247--253. MR 95h:43009 · Zbl 0802.47051 · doi:10.1006/jfan.1994.1067
[31] Donoho, D. L. and Stark, P. B. (1989). Uncertainty principles and signal recovery.SIAM J. Appl. Math. 49, 906--931. MR 90c:42003 · Zbl 0689.42001 · doi:10.1137/0149053
[32] Dym, H. and McKean, H. P. (1972).Fourier Series and Integrals. Academic Press, New York. MR 56 #945 · Zbl 0242.42001
[33] Echterhoff, S., Kaniuth, E., and Kumar, A. (1991). A qualitative uncertainty principle for certain locally compact groups.Forum Math. 3, 355--369. MR 93a:43005 · Zbl 0725.43006 · doi:10.1515/form.1991.3.355
[34] Faris, W. G. (1978). Inequalities and uncertainty principles.J. Math. Phys. 19, 461--466. MR 58 #4066 · doi:10.1063/1.523667
[35] Fefferman, C. (1983). The uncertainty principle.Bull. Amer. Math. Soc. (N.S.) 9, 129--206. MR 85f:35001 · Zbl 0526.35080 · doi:10.1090/S0273-0979-1983-15154-6
[36] Fefferman, C. and Phong, D. H. (1981). The uncertainty principle and sharp Garding inequalities.Comm. Pure Appl. Math. 34, 285--331. MR 82j:35140 · Zbl 0458.35099 · doi:10.1002/cpa.3160340302
[37] Folland, G. B. (1989).Harmonic Analysis in Phase Space. Princeton University Press, Princeton, NJ. MR 92k:22017 · Zbl 0682.43001
[38] ----------. (1995).A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton, FL. · Zbl 0857.43001
[39] Fuchs, W. H. J. (1954). On the magnitude of Fourier transforms.Proc. Intern. Congress Math. 1954, vol. II. North-Holland, Amsterdam. · Zbl 0056.29704
[40] Gabor, D. (1946). Theory of communication.J. Inst. Elec. Engr. 93, 429--457.
[41] Garofalo, N. and Lanconelli, E. (1990). Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation.Ann. Inst. Fourier (Grenoble)40, 313--356. MR 91i:22014 · Zbl 0694.22003
[42] Gesztesy, F. and Pittner, L. (1978). Uncertainty relations and quadratic forms.J. Phys. A 11, 1765--1770. MR 81a:81028 · Zbl 0392.47012 · doi:10.1088/0305-4470/11/9/010
[43] Grabowski, M. (1984). Wehrl-Lieb’s inequality for entropy and the uncertainty relation.Rep. Math. Phys. 20, 153--155. MR 86f:82008 · Zbl 0582.60098 · doi:10.1016/0034-4877(84)90029-6
[44] Gross, L. (1975). Logarithmic Sobolev inequalities.Amer. J. Math. 97, 1061--1083. MR 54 #8263 · Zbl 0318.46049 · doi:10.2307/2373688
[45] ----------. (1978). Logarithmic Sobolev inequalities--a survey.Vector Space Measures and Applications I (R. M. Aron and S. Dineen, eds.).Lecture Notes in Math. 644. Springer, Berlin, 196--203. MR 80f:46035
[46] Grünbaum, F. A. (1981). Eigenvectors of a Toeplitz matrix: discrete version of the prolate spheroidal wave functions.SIAM J. Alg. Disc. Methods 2, 136--141. MR 82m:15013 · Zbl 0519.47019 · doi:10.1137/0602017
[47] Grünbaum, F. A., Longhi, L., and Perlstadt, M. (1982). Differential operators commuting with finite convolution integral operators: some nonabelian examples.SIAM J. Appl. Math. 42, 941--955. MR 84f:43013 · Zbl 0497.22012 · doi:10.1137/0142067
[48] Havin, V. and Jöricke, B. (1994).The Uncertainty Principle in Harmonic Analysis. Springer, Berlin. MR 96c:42001 · Zbl 0827.42001
[49] Hardy, G. H. (1933). A theorem concerning Fourier transforms.J. London Math. Soc. 8, 227--231. · Zbl 0007.30403 · doi:10.1112/jlms/s1-8.3.227
[50] Heinig, H. P. and Smith, M. (1986). Extensions of the Heisenberg-Weyl inequality.Internat. J. Math. Math. Sci. 9, 185--192. MR 87i:26013 · Zbl 0589.42009 · doi:10.1155/S0161171286000212
[51] Heisenberg, W. (1927). Über den anschaulichen Inhalt der quantentheoretischen Kinematic und Mechanik.Zeit. Physik 43, 172--198. · doi:10.1007/BF01397280
[52] Helffer, B. and Nourrigat, J. (1988). Remarques sur le principe d’incertitude.J. Funct. Anal. 80, 33--46. MR 90b:35254 · Zbl 0699.35235 · doi:10.1016/0022-1236(88)90063-8
[53] Hilberg, W. and Rothe, F. G. (1971). The general uncertainty relation for real signals in communication theory.Inform. and Control 18, 103--125. MR 43 #4540 · Zbl 0215.60201 · doi:10.1016/S0019-9958(71)90310-X
[54] Hirschman, I. I. (1957). A note on entropy.Amer. J. Math. 79, 152--156. MR 19, 622i · Zbl 0079.35104 · doi:10.2307/2372390
[55] Hogan, J. A. (1988). A qualitative uncertainty principle for locally compact Abelian groups.Miniconferences on Harmonic Analysis and Operator Algebras (Proc. Centre Math. Anal. 16; M. Cowling, C. Meaney, and W. Moran, eds.). Australian National University, Canberra, 133--142. MR 89k:43006
[56] -----. (1989).Fourier Uncertainty on Groups. Ph.D. Dissertation, University of New South Wales.
[57] Hogan, J. A. (1993). A qualitative uncertainty principle for unimodular groups of type I.Trans. Amer. Math. Soc. 340, 587--594. MR 94b:43003 · Zbl 0798.43004 · doi:10.2307/2154667
[58] Hörmander, L. (1991). A uniqueness theorem of Beurling for Fourier transform pairs,Ark. Mat. 29, 237--240. MR 93b:42016 · Zbl 0755.42009 · doi:10.1007/BF02384339
[59] Ishigaki, T. (1991). Four mathematical expressions of the uncertainty relation.Found. Phys. 21, 1089--1105. MR 92k:81012 · doi:10.1007/BF00733387
[60] Kacnel’son, V. E. (1973). Equivalent norms in spaces of entire functions.Mat. Sb. 92, 34--54; English transl.,Math. USSR Sb.21, 33--55. MR 49 #3171
[61] Kahane, J.-P., Lévy-Leblond, J.-M., and Sjöstrand, J. (1993). Une inegalité de Heisenberg inverse.J. Anal. Math. 60, 135--155. MR 95a:34124
[62] Kargaev, P. P. (1982/1983). The Fourier transform of the characteristic function of a set, vanishing on an interval.Mat. Sb. 117, 397--411; English transl.Math. USSR Sb.45, 397--410. MR 83f:42010 · Zbl 0523.42005
[63] Kargaev, P. P and Volberg, A. L. (1992). Three results concerning the support of functions and their Fourier transforms.Indiana Univ. Math. J. 41, 1143--1164. MR 94d:42018 · Zbl 0769.42005 · doi:10.1512/iumj.1992.41.41057
[64] Kay, I. and Silverman, R. A. (1959). On the uncertainty relation for real signals: postscript.Inform. and Control 2, 396--397. MR 23 #B2091 · Zbl 0090.18201 · doi:10.1016/S0019-9958(59)80018-8
[65] Kempf, A. (1994). Uncertainty relation in quantum mechanics with quantum group symmetry.J. Math. Phys. 35, 4483--4496. MR 95k:81063 · Zbl 0877.17017 · doi:10.1063/1.530798
[66] Kennard, E. H. (1927). Zur Quantenmechanik einfacher Bewegungstypen.Zeit. Physik 44, 326--352. · Zbl 53.0853.02 · doi:10.1007/BF01391200
[67] Knapp, A. W. (1986).Representation Theory of Semisimple Groups. Princeton University Press, Princeton, NJ. MR 87j:22022 · Zbl 0604.22001
[68] Koppinen, M. (1994). Uncertainty inequalities for Hopf algebras.Comm. Algebra 22, 1083--1101. MR 95a:16051 · Zbl 0807.16034 · doi:10.1080/00927879408824894
[69] Kraus, K. (1967). A further remark on uncertainty relations.Zeit. Physik 201, 134--141. MR 35 #2570 · doi:10.1007/BF01332181
[70] Kumar, A. (1992). A qualitative uncertainty principle for hypergroups.Functional Analysis and Operator Theory (B. S. Yadav and D. Singh, eds.).Lecture Notes in Math. 1511. Springer, Berlin, 1--9. MR 94a:43012
[71] Lahti, P. J. and Maczynski, M. J. (1987). Heisenberg inequality and the complex field in quantum mechanics.J. Math. Phys. 28, 1764--1769. MR 88g:81011 · doi:10.1063/1.527822
[72] Landau, H. J. (1985). An overview of time and frequency limiting.Fourier Techniques and Applications (J. F. Price, ed.). Plenum, New York, 201--220.
[73] Landau, H. J. and Pollak, H. O. (1961). Prolate spheroidal wave functions, Fourier analysis and uncertainty II.Bell Syst. Tech. J. 40, 65--84. MR 25 #4147 · Zbl 0184.08602
[74] Landau, H. J. and Pollak, H. O. (1962). Prolate spheroidal wave functions, Fourier analysis and uncertainty III: the dimension of the space of essentially time- and band-limited signals.Bell Syst. Tech. J. 41, 1295--1336. MR 26 #5200 · Zbl 0184.08603
[75] Landau, H. J. and Widom, H. (1980). Eigenvalue distribution of time and frequency limiting.J. Math. Anal. Appl. 77, 469--481. MR 81m:45023 · Zbl 0471.47029 · doi:10.1016/0022-247X(80)90241-3
[76] Leipnik, R. (1959). Entropy and the uncertainty principle.Inform. and Control 2, 64--79. · Zbl 0088.20301 · doi:10.1016/S0019-9958(59)90082-8
[77] Lieb, E. H. (1978). Proof of an entropy conjecture of Wehrl.Comm. Math. Phys. 62, 35--41. MR 80d:82032 · Zbl 0385.60089 · doi:10.1007/BF01940328
[78] ----------. (1990). Integral bounds for radar ambiguity functions and Wigner distributions.J. Math. Phys. 31, 591--599. MR 91f:81076 · Zbl 0704.46050 · doi:10.1063/1.528894
[79] Logvinenko, V. N. and Sereda, Ju. F. (1974). Equivalent norms in spaces of entire functions of exponential type.Teor. Funksii Funktsional. Anal. i Prilozhen. 20, 102--111. MR 57 #17232 · Zbl 0312.46039
[80] Matolcsi, T. and Szücs, J. (1973). Intersection des mesures spectrales conjuguées.C. R. Acad. Sci. Paris 277, A841-A843. MR 48 #4804 · Zbl 0266.43002
[81] Melenk, J. M. and Zimmerman, G. (1996). Functions with time and frequency gaps.J. Fourier Anal. Appl. 2, 611--614. · Zbl 0913.42007 · doi:10.1007/s00041-001-4046-z
[82] Meshulam, R. (1992). An uncertainty principle for groups of orderpq.European J. Combin. 13, 401--407. MR 93e:20036 · Zbl 0790.43007 · doi:10.1016/S0195-6698(05)80019-8
[83] Mustard, D. (1991). Uncertainty principles invariant under the fractional Fourier transform.J. Austral. Math. Soc. Ser. B 33, 180--191. MR 93c:42007 · Zbl 0765.43004 · doi:10.1017/S0334270000006986
[84] Nahmod, A. R. (1994). Generalized uncertainty principles on spaces of homogeneous type.J. Funct. Anal. 119, 171--209. MR 95g:42027 · Zbl 0834.43008 · doi:10.1006/jfan.1994.1007
[85] Narcowich, F. J. (1990). Geometry and uncertainty.J. Math. Phys. 31, 354--364. MR 91a:81088 · Zbl 0697.46041 · doi:10.1063/1.528922
[86] Nazarov, F. L. (1993). Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type.Algebra i Analiz 5, 3--66. MR 94k:42004
[87] Nelson, E. (1959). Anlytic vectors.Ann. of Math. (2)70, 572--615. MR 21 #5901 · Zbl 0091.10704 · doi:10.2307/1970331
[88] Pati, V., Sitaram, A., Sundari, M., and Thangavelu, S. (1996). An uncertainty principle for eigenfunction expansions.J. Fourier Anal. Appl. 2, 427--433. · Zbl 1056.42511 · doi:10.1007/s00041-001-4036-2
[89] Pearl, J. (1973). Time, frequency, sequency, and their uncertainty relations.IEEE Trans. Inform. Theory IT-19, 225--229. MR 54 #12344 · Zbl 0253.93033 · doi:10.1109/TIT.1973.1054984
[90] Perlstadt, M. (1986). Polynomial analogues of prolate spheroidal wave functions and uncertainty.SIAM J. Math. Anal. 17, 340--248. MR 87f:42026 · Zbl 0583.42004 · doi:10.1137/0517022
[91] Price, J. F. (1983). Inequalities and local uncertainty principles.J. Math. Phys. 24, 1711--1714. MR 85e:81056 · Zbl 0513.60100 · doi:10.1063/1.525916
[92] Price, J. F., (ed.). (1985).Fourier Techniques and Applications. Plenum, New York.
[93] Price, J. F. (1987). Sharp local uncertainty inequalities.Studia Math. 85, 37--45. MR 88f:42029
[94] Price, J. F. and Racki, P. C. (1985). Local uncertainty inequalities for Fourier series.Proc. Amer. Math. Soc. 93, 245--251. MR 86e:42018 · Zbl 0562.42015 · doi:10.1090/S0002-9939-1985-0770530-3
[95] Price, J. F. and Sitaram, A. (1988). Functions and their Fourier transforms with supports of finite measure for certain locally compact groups.J. Funct. Anal. 79, 166--182. MR 90e:43003 · Zbl 0658.43003 · doi:10.1016/0022-1236(88)90035-3
[96] ---------- (1988). Local uncertainty inequalities for compact groups.Proc. Amer. Math. Soc. 103, 441--447. MR 89i:43004 · doi:10.1090/S0002-9939-1988-0943063-1
[97] ---------- (1988). Local uncertainty inequalities for locally compact groups.Trans. Amer. Math. Soc. 308, 105--114. MR 89h:22017 · doi:10.1090/S0002-9947-1988-0946433-5
[98] Shahshahani, M. (1989). Poincaré inequality, uncertainty principle, and scattering theory on symmetric spaces.Amer. J. Math. 111, 197--224. MR 90g:22017 · Zbl 0693.58032 · doi:10.2307/2374508
[99] Shannon, C. (1948)/(1949). A mathematical theory of communication.Bell System Tech. J. 27, 379--423 and 623--656. Reprinted: Shannon, C. and Weaver, W.The Mathematical Theory of Communication. Univ. of Illinois Press, Urbana. MR 10, 133e · Zbl 1154.94303
[100] Sitaram, A. and Sundari, M. An analogue of Hardy’s theorem for very rapidly decreasing functions on semi-simple Lie groups.Pacific J. Math. (to appear). · Zbl 0882.43005
[101] Sitaram, A., Sundari, M., and Thangavelu, S. (1995). Uncertainty principles on certain Lie groups.Proc. Indian Acad. Sci. Math. Sci. 105, 135--151. · Zbl 0857.43011 · doi:10.1007/BF02880360
[102] Skoog, R. A. (1970). An uncertainty principle for functions vanishing on a half-line.IEEE Trans. Circuit Theory CT-17, 241--243. MR 41 #8926 · doi:10.1109/TCT.1970.1083079
[103] Slepian, D. (1964). Prolate spheroidal wave functions, Fourier analysis and uncertainty IV: extensions to many dimensions; generalized prolate spheroidal wave functions.Bell Syst. Tech. J. 43, 3009--3057. MR 31 #5993 · Zbl 0184.08604
[104] ---------- (1976). On bandwidth.Proc. IEEE 64, 292--300. MR 57 #2738 · doi:10.1109/PROC.1976.10110
[105] ---------- (1978). Prolate spheroidal wave functions, Fourier analysis and uncertainty V: the discrete case.Bell Syst. Tech. J. 57, 1371--1430. · Zbl 0378.33006
[106] ---------- (1983). Some comments on Fourier analysis, uncertainty and modeling.SIAM Rev. 25, 379--393. MR 84i:94016 · Zbl 0571.94004 · doi:10.1137/1025078
[107] Slepian, D. and Pollak, H. O. (1961). Prolate spheroidal wave functions, Fourier analysis and uncertainty I.Bell Syst. Tech. J. 40, 43--63. MR 25 #4146 · Zbl 0184.08601
[108] Smith, K. T. (1990). The uncertainty principle on groups.SIAM J. Appl. Math. 50, 876--882. MR 91i:94008 · Zbl 0699.43006 · doi:10.1137/0150051
[109] Spera, M. (1993). On a generalized uncertainty principle, coherent states, and the moment map.J. Geom. Phys. 12, 165--182. MR 94m:58097 · Zbl 0781.58009 · doi:10.1016/0393-0440(93)90032-A
[110] Strichartz, R. S. (1989). Uncertainty principles in harmonic analysis.J. Funct. Anal. 84, 97--114. MR 91a:42017 · Zbl 0682.43005 · doi:10.1016/0022-1236(89)90112-2
[111] -----. (1994). Construction of orthonormal wavelets.Wavelets: Mathematics and Applications (J. J. Benedetto and M. W. Frazier, eds.). 23--50. MR 94i:42047
[112] Sun, L. (1994). An uncertainty principle on hyperbolic space.Proc. Amer. Math. Soc. 121, 471--479. MR 94h:43005 · doi:10.1090/S0002-9939-1994-1186137-8
[113] Sundari, M. Hardy’s theorem for then-dimensional Euclidean motion group.Proc. Amer. Math. Soc. (to appear). · Zbl 0898.43002
[114] Thangavelu, S. (1990). Some uncertainty inequalities.Proc. Indian Acad. Sci. Math. Sci. 100, 137--145. MR 91h:43004 · Zbl 0731.42024 · doi:10.1007/BF02880958
[115] Uffink, J. B. M. and Hilgevoord, J. (1984). New bounds for the uncertainty principle.Phys. Lett. 105A, 176--178.
[116] Uffink, J. B. M. and Hilgevoord, J. (1985). Uncertainty principle and uncertainty relations.Found. Phys. 15, 925--944. MR 87f:81012 · doi:10.1007/BF00739034
[117] Voit, M. (1993). An uncertainty principle for commutative hypergroups and Gelfand pairs.Math. Nachr. 164, 187--195. MR 95d:43005 · Zbl 0839.43010 · doi:10.1002/mana.19931640113
[118] Weyl, H. (1928).Gruppentheorie und Quantenmechanik. S. Hirzel, Leipzig. Revised English edition:The Theory of Groups and Quantum Mechanics Methuen, London, 1931; reprinted by Dover, New York, 1950.
[119] Wiener, N. (1956).I Am a Mathematician. MIT Press, Cambridge. · Zbl 0071.00415
[120] Williams, D. N. (1979). New mathematical proof of the uncertainty relation.Amer. J. Phys. 47, 606--607. MR 80d:81059 · doi:10.1119/1.11763
[121] Wolf, J. A. (1992). The uncertainty principle for Gelfand pairs.Nova J. Algebra Geom. 1, 383--396. MR 94k:43006