Yang, Song A generalization of the product-limit estimator with an application to censored regression. (English) Zbl 0885.62038 Ann. Stat. 25, No. 3, 1088-1108 (1997). Summary: The product-limit estimator (PLE) and weighted empirical processes are two important ingredients of almost any censored regression analysis. A link between them is provided by the generalized PLEs introduced in this paper. These generalized PLEs are the product-limit integrals of the empirical cumulative hazard function estimators in which weighted empirical processes are used to replace the standard empirical processes. The weak convergence and some large sample approximations of the generalized PLEs are established. As an application these generalized PLEs are used to define some minimum distance estimators which are shown to be asymptotically normal. These estimators are qualitatively robust.In some submodels an optimal choice of the weight matrix is the covariate matrix and some of these estimators are quite efficient at a few common survival distributions. To implement these estimators some computational aspects are discussed and an algorithm is given. From a real data example and some preliminary simulation results, these estimators seem to be very competitive to and more robust than some more traditional estimators such as the Buckley-James estimator. Cited in 3 Documents MSC: 62G05 Nonparametric estimation 62J05 Linear regression; mixed models 60F05 Central limit and other weak theorems 62G30 Order statistics; empirical distribution functions 62G20 Asymptotic properties of nonparametric inference Keywords:martingales; asymptotic normality; robustness; product-limit estimator; weighted empirical processes; censored regression × Cite Format Result Cite Review PDF Full Text: DOI