zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The integrated periodogram for long-memory processes with finite or infinite variance. (English) Zbl 0885.62108
The authors consider the stationary linear processes in the form $$ X_t=\sum _{j=0}^\infty c_jZ_{t-j}, \qquad t\in \Cal {Z},$$ with a noise sequence $(Z_t)_{t\in \Cal {Z}}$ of i.i.d. random variables which may have finite or infinite variance. The model may exhibit long-range dependence. The integrated periodogram $K_n(\lambda )$ can be interpreted as the relative error of the empirical spectral density compared with the true spectral density in the interval $[0,\lambda ]$. The authors derive functional limit theorems for the randomly centered sequence $$ \left (K_n(\lambda )-K_n(\pi ){{\lambda +\pi }\over {2\pi }} \right )_{\lambda \in [-\pi ,\pi ]} $$ The results are applied to obtain corresponding Kolmogorov--Smirnov and Cramér--von Mises goodness-of-fit tests.
Reviewer: G.Dohnal (Praha)

MSC:
62M15Spectral analysis of processes
60F17Functional limit theorems; invariance principles
62M10Time series, auto-correlation, regression, etc. (statistics)
62G10Nonparametric hypothesis testing
Software:
longmemo
WorldCat.org
Full Text: DOI
References:
[1] Anderson, T. W.: Goodness of fit tests for spectral distributions. Ann. statist. 21, 830-847 (1993) · Zbl 0779.62083
[2] Bartlett, M. S.: Problemes de l’analyse spectrale des séries temporelles stationnaires. Publ. inst. Statist. univ. Paris III-3, 119-134 (1954) · Zbl 0058.35704
[3] Bartlett, M. S.: An introduction to stochastic processes with special reference to methods and applications. (1955) · Zbl 0068.11801
[4] Beran, J.: Statistics for long-memory processes. (1994) · Zbl 0869.60045
[5] Billingsley, P.: Convergence of probability measures. (1968) · Zbl 0172.21201
[6] Bingham, N. H.; Goldie, C. M.; Teugels, J. L.: Regular variation. (1987)
[7] Brockwell, P. J.; Davis, R. A.: Time series: theory and methods. (1991) · Zbl 0709.62080
[8] Dahlhaus, R.: Asymptotic normality of spectral estimates. J. multivariate anal. 16, 412-431 (1985) · Zbl 0579.62082
[9] Dahlhaus, R.: Empirical spectral processes and their applications to time series analysis. Stochastic process appl. 30, 69-83 (1988) · Zbl 0655.60033
[10] Davis, R. A.; Resnick, S. I.: Limit theory for moving averages of random variables with regularly varying tail probabilities. Ann. probab. 13, 179-195 (1985) · Zbl 0562.60026
[11] Davis, R. A.; Resnick, S. I.: Limit theory for the sample covariance and correlation functions of moving averages. Ann. statist. 14, 533-558 (1986) · Zbl 0605.62092
[12] Feller, W.: An introduction to probability theory and its applications II. (1971) · Zbl 0219.60003
[13] Giraitis, L.; Leipus, R.: A functional central limit theorem for non-parametric estimates of spectra and the change-point problem for spectral functions. Lith. math. Trans. (Lit. Mat. sb.) 30, 674-697 (1990) · Zbl 0761.62123
[14] Giraitis, L.; Leipus, R.: Testing and estimating in the change-point problem of the spectral function. Lith. math. Trans. (Lit. Mat. sb.) 32, 20-38 (1992) · Zbl 0794.62066
[15] L. Giraitis, R. Leipus and D. Surgailis, The change-point problem for dependent observations, J. Statist. Plann. Inference [To appear]. · Zbl 0856.62073
[16] Giraitis, L.; Surgailis, D.: A central limit theorem for the empirical process of a long memory linear sequence. Probab. theory related fields (1994) · Zbl 0943.60035
[17] Grenander, U.; Rosenblatt, M.: Statistical analysis of stationary time series. (1984) · Zbl 0575.62080
[18] Hida, T.: Brownian motion. (1980) · Zbl 0423.60063
[19] L. Horváth and P. Kokoszka, The effect of long-range dependence on change-point estimators, J. Statist. Plann. Inference [To appear]. · Zbl 0946.62078
[20] C. Klüppelberg and T. Mikosch, The integrated periodogram for stable processes, Ann. Statist. [To appear]. · Zbl 0898.62116
[21] C. Klüppelberg and T. Mikosch, Gaussian limit fields for the integrated periodogram, Ann. Appl. Probab. [To appear]. · Zbl 0866.60030
[22] Kokoszka, P. S.: Prediction of infinite variance fractional ARIMA. Probab. math. Statist. 16, 65-83 (1996) · Zbl 0857.60032
[23] Kokoszka, P. S.; Taqqu, M. S.: Fractional ARIMA with stable innovations. Stochastic process appl. 60, 19-47 (1995) · Zbl 0846.62066
[24] P.S. Kokoszka and M.S. Taqqu, Parameter estimation for infinite variance fractional ARIMA, Ann. Statist. [To appear]. · Zbl 0896.62092
[25] Kokoszka, P. S.; Taqqu, M. S.: Discrete time parametric models with long memory and infinite variance. (1996) · Zbl 0990.62080
[26] Mcconnell, T. R.; Taqqu, M. S.: Decoupling inequalities for multilinear forms in independent symmetric random variables. Ann. probab. 14, 943-954 (1986) · Zbl 0602.60025
[27] Mikosch, T.: Functional limit theorems for random quadratic forms. Stochastic process appl. 37, 81-98 (1991) · Zbl 0726.60030
[28] Mikosch, T.; Gadrich, T.; Klüppelberg, C.; Adler, R. J.: Parameter estimation for ARMA models with infinite variance innovations. Ann. statist. 23, 305-326 (1995) · Zbl 0822.62076
[29] Mikosch, T.; Norvaiša, R.: Uniform convergence of the empirical spectral distribution function. (1995)
[30] Priestley, M. B.: Spectral analysis and time series I. (1981) · Zbl 0537.62075
[31] Rosinski, J.: Remarks on Banach spaces of stable type. Probab. math. Statist. 1, 67-71 (1980) · Zbl 0511.60005
[32] Rosinski, J.; Woyczyński, W. A.: Multilinear forms in Pareto-like random variables and product random measures. Coll. math. 51, 303-313 (1987) · Zbl 0644.60016
[33] Samorodnitsky, G.; Taqqu, M. S.: Stable non-Gaussian random processes. Stochastic models with infinite variance (1994) · Zbl 0925.60027
[34] Shorack, G. R.; Wellner, J. A.: Empirical processes with applications to statistics. (1986) · Zbl 1170.62365
[35] Zygmund, A.: 1st paperback ed. Trigonometric series. Trigonometric series (1988)