×

Arithmetic \({\mathcal D}\)-modules. I: Differential operators of finite level. (\({\mathcal D}\)-modules arithmétiques. I: Opérateurs différentiels de niveau fini.) (French) Zbl 0886.14004

The article deals with foundations of a theory of differential operators on a smooth scheme in mixed characteristics. A general problem in crystalline cohomology is the necessity to use factorials in denominators: Either by using DP-immersions and (dually) differential operators which are polynomials in the coordinate derivations, or by using nilpotent immersions and divided powers of coordinate derivations. In any case one of the relevant algebras becomes non noetherian.
In this work one uses a weakened version of divided powers (only a power \(x^q\), \(q=p^n\), has divided powers), then \(p\)-adically completes, inverts \(p\), and passes to the limit \(n\to\infty\). This gives a theory with coherent rings. To show this requires technical work, the key being that various intermediate rings are still noetherian, and various Tor-groups annihilated by a finite power of \(p\). This persists after \(p\)-adic completion, and transition maps become flat if one finally inverts \(p\).
Reviewer: G.Faltings (Bonn)

MSC:

14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials
14F30 \(p\)-adic cohomology, crystalline cohomology

References:

[1] A. GROTHENDIECK et J. DIEUDONNÉ , Éléments de Géométrie Algébrique , (Publ. Math. I.H.E.S., vol. 4, 8, 11, 17, 20, 24, 28, 32, 1960 - 1967 ). Numdam · Zbl 0203.23301
[2] M. ARTIN , A. GROTHENDIECK et J.-L. VERDIER , Théorie des topos et cohomologie étale des schémas (Lecture Notes in Math. 269, 270, Springer-Verlag, 1972 ). · Zbl 0234.00007
[3] P. BERTHELOT , Cohomologie cristalline des schémas de caractéristique p > 0 (Lecture Notes in Math. vol. 407, Springer Verlag, 1974 ). MR 52 #5676 | Zbl 0298.14012 · Zbl 0298.14012
[4] P. BERTHELOT , Géométrie rigide et cohomologie des variétés algébriques de caractéristique p , Journées d’analyse p-adique ( 1982 ), in Introduction aux cohomologies p-adiques (Bull. Soc. Math. France, Mémoire, vol. 23, 1986 , p. 7-32). Numdam | MR 88a:14020 | Zbl 0606.14017 · Zbl 0606.14017
[5] P. BERTHELOT , Cohomologie rigide et théorie de Dwork : le cas des sommes exponentielles (Astérisque, vol. 119-120, 1984 , p. 17-49). MR 87b:14009 | Zbl 0577.14013 · Zbl 0577.14013
[6] P. BERTHELOT , Cohomologie rigide et théorie des D-modules , Proc. Conf. p-adic Analysis (Trento 1989 ) (Lecture Notes in Math. 1454, Springer Verlag, 1990 , p. 78-124). Zbl 0722.14008 · Zbl 0722.14008
[7] P. BERTHELOT , Cohomologie rigide et cohomologie rigide à supports propres , en préparation.
[8] P. BERTHELOT , D-modules arithmétiques II . Descente par Frobenius, en préparation. · Zbl 0948.14017
[9] P. BERTHELOT , D-modules arithmétiques III . Images directes et réciproques, en préparation.
[10] P. BERTHELOT , L. BREEN et W. MESSING , Théorie de Dieudonné cristalline II (Lecture Notes in Math. 930, Springer-Verlag, 1982 ). MR 85k:14023 | Zbl 0516.14015 · Zbl 0516.14015
[11] P. BERTHELOT et A. OGUS , Notes on crystalline cohomology (Math. Notes 21, Princeton University Press, 1978 ). MR 58 #10908 | Zbl 0383.14010 · Zbl 0383.14010
[12] P. BERTHELOT et A. OGUS , F-isocrystals and de Rham cohomology I (Invent. Math., vol. 72, 1983 , p. 159-199). MR 85e:14025 | Zbl 0516.14017 · Zbl 0516.14017 · doi:10.1007/BF01389319
[13] A. BOREL et al., Algebraic D-modules , Perspectives in Math. 2, Academic Press, 1987 . MR 89g:32014 | Zbl 0642.32001 · Zbl 0642.32001
[14] S. BOSCH , U. GÜNTZER et R. REMMERT , Non-archimedean analysis (Grundlehren des math. Wissenschaften, vol. 261, Springer-Verlag, 1984 ). MR 86b:32031 | Zbl 0539.14017 · Zbl 0539.14017
[15] N. BOURBAKI , Algèbre commutative , Ch. 3-4, Hermann, 1961 . Zbl 0119.03603 · Zbl 0119.03603
[16] N. BOURBAKI , Espaces vectoriels topologiques , Ch. 1-5, Masson, 1981 . MR 83k:46003 | Zbl 0482.46001 · Zbl 0482.46001
[17] J.-L. BRYLINSKI , A. S. DUBSON et M. KASHIWARA , Formule de l’indice pour les modules holonomes et obstruction d’Euler locale (C. R. Acad. Sci. Paris, 293, 1981 , p. 573-576). MR 83a:32010 | Zbl 0492.58021 · Zbl 0492.58021
[18] P. DELIGNE , Équations différentielles à points singuliers réguliers (Lecture Notes in Math., vol. 163, Springer-Verlag, 1970 ). MR 54 #5232 | Zbl 0244.14004 · Zbl 0244.14004 · doi:10.1007/BFb0061194
[19] D. DWORK , Bessel functions as p-adic functions of the argument (Duke Math. Journal, vol. 41, 1974 , p. 711-738). Article | MR 52 #8124 | Zbl 0302.14008 · Zbl 0302.14008 · doi:10.1215/S0012-7094-74-04176-3
[20] G. FALTINGS , F-isocrystals on open varieties : results and conjectures (Grothendieck Festschrift II, Prog. in Math., 87, Birkhäuser, 1990 ). MR 92f:14015 | Zbl 0736.14004 · Zbl 0736.14004
[21] W. FULTON , A note on weakly complete algebras (Bull. Amer. Math. Soc., 1969 , p. 591-593). Article | MR 39 #193 | Zbl 0205.34303 · Zbl 0205.34303 · doi:10.1090/S0002-9904-1969-12250-0
[22] L. GARNIER , Quelques propriétés des D\dagger -modules holonomes sur les courbes (Thèse de Doctorat, Université de Rennes 1, 1993 ).
[23] A. GROTHENDIECK , On the de Rham cohomology of algebraic varieties (Publ. Math. I.H.E.S., vol. 29, 1966 , p. 351-359). Numdam | MR 33 #7343 | Zbl 0145.17602 · Zbl 0145.17602 · doi:10.1007/BF02684807
[24] A. GROTHENDIECK , Crystals and the de Rham cohomology of schemes , in Dix exposés sur la cohomologie des schémas, North-Holland, 1968 . MR 42 #4558 | Zbl 0215.37102 · Zbl 0215.37102
[25] A. GROTHENDIECK et J. DIEUDONNÉ , Éléments de Géométrie Algébrique I (Grundlehren der math. Wissenschaften, vol. 166, Springer-Verlag, 1971 ). Zbl 0203.23301 · Zbl 0203.23301
[26] C. HUYGHE , Construction et étude de la transformation de Fourier des D-modules arithmétiques (Thèse de Doctorat, Université de Rennes 1, 1995 ).
[27] O. HYODO et K. KATO , Semi-stable reduction and crystalline cohomology with logarithmic poles , preprint. · Zbl 0852.14004
[28] M. KASHIWARA , Faisceaux constructibles et systèmes holonomes d’équations aux dérivées partielles à points singuliers réguliers (Sém. Goulaouic-Schwarz, 1979 - 1980 , exp. 19 ; École Polytechnique 1981 ). Numdam | Zbl 0444.58014 · Zbl 0444.58014
[29] M. KASHIWARA , The Riemann-Hilbert problem for holonomic systems (Publ. R.I.M.S., vol. 437, Kyoto University, 1983 ). Article
[30] K. KATO , Logarithmic structures of Fontaine-Illusie , in : J. Igusa, Algebraic analysis, Geometry and Number Theory, John Hopkins University Press, 1989 . MR 99b:14020 · Zbl 0776.14004
[31] N. M. KATZ , Nilpotent connexions and the monodromy theorem : applications of a result of Turittin (Publ. Math. I.H.E.S., vol. 35, 1971 , p. 175-232). Numdam | Zbl 0221.14007 · Zbl 0221.14007 · doi:10.1007/BF02684688
[32] R. KIEHL , Theorem A und Theorem B in der nichtarchimedischen Funktionentheorie (Invent. Math., vol. 2, 1967 , p. 256-273). MR 35 #1834 | Zbl 0202.20201 · Zbl 0202.20201 · doi:10.1007/BF01425404
[33] G. LAUMON , Sur la catégorie dérivée filtrée des D-modules filtrés , in : M. Raynaud et T. Shioda, Algebraic Geometry (Proc. Tokyo/Kyoto, 1982 ) (Lecture Notes in Math., vol. 1016, Springer-Verlag, 1990 , p. 151-237). MR 85d:32022 | Zbl 0551.14006 · Zbl 0551.14006
[34] Z. MEBKHOUT , Une équivalence de catégories (Comp. Math., vol. 51, 1984 , p. 51-62). Numdam | MR 85k:58072 | Zbl 0566.32021 · Zbl 0566.32021
[35] Z. MEBKHOUT , Une autre équivalence de catégories (Comp. Math., vol. 51, 1984 , p. 63-88). Numdam | MR 85k:58073 | Zbl 0566.32021 · Zbl 0566.32021
[36] Z. MEBKHOUT , Le formalisme des six opérations de Grothendieck pour les DX-modules cohérents (Travaux en cours, vol. 35, Hermann, 1989 ). MR 90m:32026 | Zbl 0686.14020 · Zbl 0686.14020
[37] Z. MEBKHOUT et L. NARVAEZ-MACARRO , Sur les coefficients de de Rham-Grothendieck des variétés algébriques , Proc. Conf. p-adic Analysis (Trento 1989 ) (Lecture Notes in Math., vol. 1454, Springer-Verlag, 1990 , p. 267-308). MR 92g:14016 | Zbl 0727.14011 · Zbl 0727.14011
[38] D. MEREDITH , Weak formal schemes (Nagoya Math. Journal, vol. 45, 1971 , p. 1-38). Article | MR 48 #8505 | Zbl 0207.51502 · Zbl 0207.51502
[39] P. MONSKY et G. WASHNITZER , Formal cohomology I (Annals of Math., vol. 88, 1968 , p. 181-217). MR 40 #1395 | Zbl 0162.52504 · Zbl 0162.52504 · doi:10.2307/1970571
[40] C. NĂSTĂCESCU et F. VAN OYSTAEYEN , Graded ring theory , North-Holland, 1982 . · Zbl 0494.16001
[41] A. OGUS , The convergent topos in characteristic p , Grothendieck Festschrift III (Progress in Math., vol. 88, Birkhäuser, 1990 , p. 133-162). MR 92b:14011 | Zbl 0728.14020 · Zbl 0728.14020
[42] J.-P. SERRE , Faisceaux algébriques cohérents (Annals of Math., vol. 61, 1955 , p. 197-278). MR 16,953c | Zbl 0067.16201 · Zbl 0067.16201 · doi:10.2307/1969915
[43] M. VAN DER PUT , The cohomology of Monsky and Washnitzer , in Introduction aux cohomologies p-adiques (Bull. Soc. Math. France, Mémoire vol. 23, 1986 , p. 33-59). Numdam | MR 88a:14022 | Zbl 0606.14018 · Zbl 0606.14018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.