## Global existence of small solutions to nonlinear Schrödinger equations.(English)Zbl 0886.35141

This paper is concerned with the global existence of small solutions to $i\partial _t u + \frac{1}{2}\Delta u = F(u,\nabla u,\bar{u},\nabla{\bar{u}}),\quad (t,x) \in \mathbb{R} \times \mathbb{R}^n,\;u(0,x) = \varepsilon_0 \phi(x), \;x \in \mathbb{R}^n,$ where $$n \geq 3$$, $$\varepsilon_0$$ is sufficiently small, $F=F(u,w,\bar{u},\bar{w})=\sum_{l_0 \leq |\alpha|+|\beta|+|\gamma|\leq l_1} \lambda_{\alpha,\beta,\gamma} u^{\alpha_1}\bar{u}^{\alpha_2}w^{\beta_j}\bar{w}^{\gamma_k}+ \sum_{|\beta|+|\gamma|=2}\lambda_{\beta,\gamma} w^{\beta_j}\bar{w}^{\gamma_k}$ with $$w=(w_j),1 \leq j \leq n,\lambda_{\alpha,\beta,\gamma},\lambda_{\beta,\gamma} \in C$$ (complex numbers), $$l_0,l_1 \in N$$ (integers), $$l_0=3,4$$ for $$l_0=2$$ for $$n \geq 5.$$ The authors prove a unique existence of global solutions for $$\varepsilon_0$$ sufficiently small and for $$n \geq 3.$$ It is remarked that the gradient of $$F$$ with respect to $$w$$ is not assumed to be pure imaginary.
Reviewer: A.Tsutsumi (Osaka)

### MSC:

 35Q55 NLS equations (nonlinear Schrödinger equations) 35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs 35A05 General existence and uniqueness theorems (PDE) (MSC2000)
Full Text:

### References:

  Klainerman, S., Long-time behavior of solutions to nonlinear evolution equations, Arch. Rat. Mech. Anal., 78, 73-98 (1982) · Zbl 0502.35015  Klainerman, S.; Ponce, G., Global, small amplitude solutions to nonlinear evolution equations, Commun. Pure Appl. Math., 36, 133-141 (1983) · Zbl 0509.35009  Shatah, J., Global existence of small solutions to nonlinear evolution equations, J. Differential Equations, 46, 409-425 (1982) · Zbl 0518.35046  Chihara, H., Global existence of small solutions to semilinear Schrödinger equations with gauge invariance, Publ. RIMS, 31, 5, 731-753 (1995) · Zbl 0847.35126  Chihara, H., Global existence of small solutions to semilinear Schrödinger equations, Commun. P.D.E., 21, 1-2, 63-78 (1996) · Zbl 0843.35111  Chihara, H., The initial value problem for cubic semilinear Schrödinger equations (1995), Preprint  Doi, S., On the Cauchy problem for Schrödinger type equations and the regularity of solutions, J. Math. Kyoto Univ., 34, 319-328 (1994) · Zbl 0807.35026  Kenig, C. E.; Ponce, G.; Vega, L., Oscillatory integral and regularity of dispersive equations, Indiana Univ. J., 40, 33-69 (1991) · Zbl 0738.35022  Kenig, C. E.; Ponce, G.; Vega, L., Small solutions to nonlinear Schrödinger equations, Ann. I.H.P. Non. Lin., 10, 255-288 (1993) · Zbl 0786.35121  Hayashi, N., Global existence of small solutions to quadratic nonlinear Schrödinger equations, Comm. P.D.E., 18, 1109-1124 (1993) · Zbl 0786.35120  Klainerman, S., Uniform decay estimate and the Lorentz invariant of the classical wave equation, Commun. Pure Appl. Math., 38, 321-332 (1985) · Zbl 0635.35059  Kenig, C. E.; Ponce, G.; Vega, L., On the generalized Benjamin-Ono equation, Trans. A.M.S., 342, 155-172 (1994) · Zbl 0804.35105  Hayashi, N.; Ozawa, T., Global, small radially symmetric solutions to nonlinear Schrödinger equations and a gauge transformations, Diff. Integral Eqs., 8, 1061-1072 (1995) · Zbl 0823.35157  Hayashi, N.; Kato, K., Global existence of small analytic solutions to quadratic nonlinear Schrödinger equations (1994), Preprint  Friedman, A., Partial Differential Equations (1983), Krieger  Ginibre, J.; Hayashi, N., Almost global solutions to quadratic nonlinear Schrödinger equations, Math. Z., 219, 119-140 (1995) · Zbl 0824.35026  Hirata, H., On the elliptic-hyperbolic Davey-Stewartson system, RIMS Kokyuroku, 873, 140-155 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.