zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fundamental sets of continuous functions on spheres. (English) Zbl 0886.41016
Let $S^m$ and $S^\infty$ denote the unit spheres in $\bbfR^{m+1}$ and $\ell^2$, respectively. The authors look for functions $f$ in $C[- 1,1]$ such that the family of functions $x\mapsto f(\langle x,v\rangle)$, where $v$ runs over $S^m$, is fundamental in the space $C(S^m)$. They also consider this problem for $C(S^\infty)$ when this space is given the topology of uniform convergence on compact sets.

41A30Approximation by other special function classes
41A45Approximation by arbitrary linear expressions
41A63Multidimensional approximation problems
42A65Completeness of sets of functions
42A82Positive definite functions
42C10Fourier series in special orthogonal functions
42C30Completeness of sets of functions of non-trigonometric Fourier analysis
Full Text: DOI
[1] R. Askey (1975): Orthogonal Polynomials and Special Functions. Regional Conference Series in Applied Mathematics, Vol. 21. Philadelphia: SIAM. · Zbl 0298.33008
[2] S. Chanillo, B. Muckenhoupt (1993): Weak Type Estimates for Césaro Sums of Jacobi Polynomial Series. Memoirs, Amer. Math. Soc., No. 487. Providence, RI. · Zbl 0773.40001
[3] N. Dunford, J. T. Schwartz (1953): ”Linear Operators, Part I. General Theory. New York: Interscience. · Zbl 0084.10402
[4] E. Kogbetliantz (1924):Recherches sur la summabilité des séries ultrasphériques par la méthod des moyennes arithmetique. J. Math. Pures Appl.,3:107--187. · Zbl 50.0207.05
[5] C. Müller (1966): Spherical Harmonics. Lecture Notes in Mathematics, Vol. 17. Berlin: Springer-Verlag. · Zbl 0138.05101
[6] I. J. Schoenberg (1942):Positive definite functions on spheres. Duke Math. J.,9:96--108. · Zbl 0063.06808 · doi:10.1215/S0012-7094-42-00908-6
[7] E. M. Stein, andG. Weiss (1971): Introduction to Fourier Analysis on Euclidean Spaces. Princeton, NJ: Princeton University Press. · Zbl 0232.42007
[8] Xingping Sun (1994):The fundamentality of translates of a continuous function on spheres. Namer. Algorithms,8: 131--134. · Zbl 0819.43003 · doi:10.1007/BF02145700
[9] G. Szegö (1959): Orthogonal Polynomials. Amer. Math. Soc. Colloquium Publ., Vol. XXIII New York.