Rota, Gian-Carlo; Wallstrom, Timothy C. Stochastic integrals: A combinatorial approach. (English) Zbl 0886.60046 Ann. Probab. 25, No. 3, 1257-1283 (1997). A unified combinatorial definition of multiple stochastic integrals is given in the setting of random measures. The notion of stochastic sequence of binomial type is introduced as a generalization of special polynomial sequences appearing commonly in stochastic integration including Hermite, Poisson-Charlier and Kravchuk polynomials. Reviewer: Gong Guanglu (Beijing) Cited in 3 ReviewsCited in 24 Documents MSC: 60H05 Stochastic integrals 05E05 Symmetric functions and generalizations 05E35 Orthogonal polynomials (combinatorics) (MSC2000) 11B65 Binomial coefficients; factorials; \(q\)-identities 60G57 Random measures 81T18 Feynman diagrams 05A18 Partitions of sets Keywords:multiple stochastic integral; partition of set; discrete and homogeneous chaos; orthogonal polynomial; symmetric function; Kailath-Segall formula PDF BibTeX XML Cite \textit{G.-C. Rota} and \textit{T. C. Wallstrom}, Ann. Probab. 25, No. 3, 1257--1283 (1997; Zbl 0886.60046) Full Text: DOI References: [1] Bjorken, J. D. and Drell, S. D. (1964). Relativistic Quantum Mechanics. McGraw-Hill, New York. · Zbl 0184.54201 [2] Bogoliubov, N. N. and Shirkov, D. V. (1980). Introduction to the Theory of Quantized Fields. Wiley, New York. · Zbl 0925.81002 [3] Cameron, R. H. and Martin, W. T. (1947). The orthogonal development of nonlinear functionals in series of Fourier-Hermite functionals. Ann. Math. 48 385-392. JSTOR: · Zbl 0029.14302 [4] Carlen, E. A. and Krée, P. (1991). Lp estimates on iterated stochastic integrals. Ann. Probab. 19 354-368. · Zbl 0721.60052 [5] Chihara, T. S. (1978). An Introduction to Orthogonal Polynomials. Gordon and Breach, New York. · Zbl 0389.33008 [6] Cox, D. R. and Isham, V. (1980). Point Processes. Chapman and Hall, London. · Zbl 0441.60053 [7] Doléans-Dade, C. (1970). Quelques applications de la formule de changement de variables pour les semimartingales. Z. Wahrsch. Verw. Gebiete 16 181-194. · Zbl 0194.49104 [8] Doubilet, P. (1972). On the foundations of combinatorial theory. VII: symmetric functions through the theory of distribution and occupancy. Stud. Appl. Math. 51 377-396. · Zbl 0274.05008 [9] Engel, D. D. (1982). The multiple stochastic integral. Mem. Am. Math. Soc. 38 1-82. · Zbl 0489.60064 [10] Floreanini, R., LeTourneux, J. and Vinet, L. (1993). Quantum mechanics and polynomials of a discrete variable. Ann. Physics 226 331-349. · Zbl 0784.35094 [11] Hida, T. (1970). Stationary Stochastic Processes. Princeton Univ. Press. · Zbl 0214.16401 [12] Hida, T. and Ikeda, N. (1965). Analysis on Hilbert space with reproducing kernel arising from multiple Wiener integral. Proc. Fifth Berkeley Symp. Math. Statist. Probab. 2 117-143. Univ. California Press, Berkeley. · Zbl 0212.19803 [13] It o, K. (1951). Multiple Wiener integral. J. Math. Soc. Japan 3 157-169. · Zbl 0044.12202 [14] It o, K. (1956). Spectral type of the shift transformation of differential processes with stationary increments. Trans. Amer. Math. Soc. 81 253-263. JSTOR: · Zbl 0073.35303 [15] Kakutani, S. (1950). Determination of the spectrum of the flow of Brownian motion. Proc. Nat. Acad. Sci. U.S.A. 36 319-323. JSTOR: · Zbl 0038.29105 [16] Kakutani, S. (1961). Spectral analysis of stationary Gaussian processes. Proc. Fourth Berkeley Symp. Math. Statist. Probab. 2 239-247. Univ. California Press, Berkeley. · Zbl 0129.30103 [17] Kallenberg, O. (1983). Random Measures. Academic Press, New York. · Zbl 0544.60053 [18] Kallenberg, O. and Szulga, J. (1989). Multiple integration with respect to Poisson and Lévy processes. Probab. Theory Related Fields 83 101-134. · Zbl 0681.60049 [19] Lebedev, N. N. (1972). Special Functions and Their Applications. Dover, New York. · Zbl 0271.33001 [20] Major, P. (1981). Multiple Wiener-It o Integrals. Lecture Notes in Math. 849. Springer, New York. · Zbl 0451.60002 [21] McKean, Jr., H. P. (1955). Sample functions of stable processes. Ann. Math. 61 564-579. JSTOR: · Zbl 0068.11501 [22] McKean, Jr., H. P. (1969). Stochastic Integrals. Academic Press, New York. · Zbl 0191.46603 [23] Metivier, M. and Pellaumail, J. (1980). Stochastic Integration. Academic Press, New York. · Zbl 0463.60004 [24] Meyer, P.-A. (1976). Un cours sur les integrales stochastiques. Seminaire de Probabilités X: Université de Strasbourg. Lecture Notes in Math. 511 245-400. Springer, Berlin. · Zbl 0374.60070 [25] Meyer, P.-A. (1993). Quantum Probability for Probabilists. Lecture Notes in Math. 1538. Springer, New York. · Zbl 0773.60098 [26] Nikiforov, A. F., Suslov, S. K. and Uvarov, V. B. (1991). Classical Orthogonal Polynomials of a Discrete Variable. Springer, Berlin. · Zbl 0743.33001 [27] Ogura, H. (1972). Orthogonal functionals of the Poisson process. IEEE Trans. Inform. Theory IT-18 473-481. · Zbl 0244.60044 [28] Protter, P. (1990). Stochastic Integration and Differential Equations: A New Approach. Springer, Berlin. · Zbl 0694.60047 [29] Rota, G.-C. (1964). The number of partitions of a set. Amer. Math. Monthly 71 498-504. JSTOR: · Zbl 0121.01803 [30] Rota, G.-C. (1964). On the foundations of combinatorial theory I. Theory of Möbius functions. Z. Wahrsch. Verw. Gebiete 2 340-368. · Zbl 0121.02406 [31] Rota, G.-C. (1975). Finite Operator Calculus. Academic Press, New York. [32] Rota, G.-C., Kahaner, D. and Odlyzko, A. (1973). On the foundations of combinatorial theory. VIII. Finite operator calculus. J. Math. Anal. Appl. 42 684-760. · Zbl 0267.05004 [33] Rota, G.-C. and Taylor, B. D. (1994). The classical umbral calculus. SIAM J. Math. Anal. 25 694-711. · Zbl 0797.05006 [34] Segal, I. E. (1956). Tensor algebras over Hilbert spaces, I. Trans. Amer. Math. Soc. 81 106- 134. JSTOR: · Zbl 0070.34003 [35] Segall, A. and Kailath, T. (1976). Orthogonal functionals of independent increment processes. IEEE Trans. Inform. Theory IT-22 287-298. · Zbl 0353.60080 [36] Streater, R. F. and Wightman, A. S. (1964). PCT, Spin and Statistics, and All That. Benjamin/Cummings, Reading, MA. · Zbl 0135.44305 [37] Wick, G.-C. (1950). Phys. Rev. 80 268-272. · Zbl 0040.13006 [38] Wiener, N. (1938). The homogeneous chaos. Amer. J. Math. 55 897-936. JSTOR: · Zbl 0019.35406 [39] Wiener, N. and Wintner, A. (1941). The discrete chaos. Amer. J. Math. 65 279-298. JSTOR: · Zbl 0063.08250 [40] Zinn-Justin, J. (1989). Quantum Field Theory and Critical Phenomena. Clarendon Press, Oxford. · Zbl 0865.00014 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.