×

An extension of the root perturbation \(m\)-dimensional polynomial factorization method. (English) Zbl 0886.65053

The author gives an extension of his own root perturbation method for factorization of a multidimensional polynomial, a very interesting topic in modern mathematics and computer science, having significant theoretical and practical relevance, in the reviewer’s opinion.

MSC:

65H10 Numerical computation of solutions to systems of equations
26C10 Real polynomials: location of zeros
12Y05 Computational aspects of field theory and polynomials (MSC2010)
PDFBibTeX XMLCite
Full Text: EuDML Link

References:

[1] A. C. Antulas: A system-theoretic approach to the factorization theory of non-singular polynomial matrices. Internat. J. Systems Sci. 33 (1981), 6, 1005-1026. · Zbl 0473.93021
[2] J. S. Chakrabarti, S. K. Mitra: An algorithm for multivariable polynomial factorization. Proc. IEEE Internat. Symp. Circ. Syst. 1977, pp. 678-683.
[3] G. E. Collins: Computer algebra of polynomials and functions. Amer. Math. Monthly 80 (1973), 725-755. · Zbl 0275.68008
[4] D. E. Dudgeon: The existence of cepstra for 2-D polynomials. IEEE Trans. Acoust. Speech Signal Process. ASSP-23 (1975), 2, 242-243.
[5] M. P. Ekstrom, R. E. Twogood: Finite order, recursive models for 2-D random fields. Proc. of the 20th Hidwest Symp. Circ. Syst. 1977, pp. 188-189.
[6] M. P. Ekstrom, J. W. Woods: Spectral factorization. IEEE Trans. Acoust. Speech Signal Process. ASSP-24 (1976), 2, 115-128.
[7] R. Gorez: Matrix factorization. Chandrasekhar equations techniques in the design of linear quadratic optimal control systems. Internat. J. Systems Sci. 12 (1981), 8, 907-915. · Zbl 0473.93024
[8] R. L. Graham D. E. Knuth, O. Patashnik: Concrete Mathematics, A Foundation for Computer Science. Addison-Wesley Publishing Company, New York 1994. · Zbl 0836.00001
[9] T. Kaczorek: Two-Dimensional Linear Systems. Springer-Verlag, Berlin–Heidelberg 1985. · Zbl 0593.93031
[10] D. E. Knuth: The Art of Computer Programming. Vol. 1: Fundamental algorithms. – Vol. 2: Seminumerical Algorithms. – Vol. 3: Electronic Digital Computers – Programming. Addison-Wesley Publishing Company, London–Amsterdam–Ontario–Sydney 1981.
[11] N. E. Mastorakis: Multidimensional Polynomials. Ph.D. Thesis. National Technical University of Athens 1992. · Zbl 0781.93048
[12] N. E. Mastorakis, E. Nikos: Algebra and Analysis of Multivariable Polynomials: General methods of multivariable polynomial factorization. Athens 1988.
[13] N. E. Mastorakis, N. J. Theodorou: ’Operators’ method for \(m\)-D polynomials factorization. Found. Comput. Decision Sci. 15 (1990), 2-3, 159-172. · Zbl 0746.93045
[14] N. E. Mastorakis S. G. Tzafestas, N. J. Theodorou: A simple multidimensional polynomial factorization method. IMACS-IFAC Internat. Symp. on Math. and Intelligent Models in System Simulation, Brussels 1990, VII.B.1-1.
[15] N. E. Mastorakis, N. J. Theodorou: State-space model factorization in \(m\)-dimensions. Application in stability. Foundation of Computing and Decision Sciences 17 (1992), 55-61. · Zbl 0814.93036
[16] N. E. Mastorakis N. J. Theodorou, S. G. Tzafestas: Factorization of \(m\)-D polynomials into linear \(m\)-D factors. Internat. J. Systems Sci. 23 (1992), 11, 1805-1824. · Zbl 0771.93045
[17] N. E. Mastorakis N. J. Theodorou, S. G. Tzafestas: A general factorization method for multivariable polynomial. Mult. Syst. and Sign. Process. 5 (1994), 151-178. · Zbl 0794.93061
[18] N. E. Mastorakis S. G. Tzafestas, N. J. Theodorou: A reduction method for multivariable polynomial factorization. Conference SPRANN’94, IMACS-IEEE International Symposium, Lille 1994, pp. 59-64. · Zbl 0794.93061
[19] N. E. Mastorakis S. G. Tzafestas, N. J. Theodorou: Multidimensional polynomial factorization through the root perturbation approach. Part I. Control Theory Adv. Technology 10 (1994), 4, 901-911.
[20] P. Misra, R. V. Patel: Simple factorizability of 2-D polynomials. Internat. Symp. Circ. Syst., New Orleans 1990, pp. 1207-1210.
[21] L. S. Shieh, N. Clahin: A computer-aided method for the factorization of matrix polynomials. Internat. J. Systems Sci. 12 (1981), 3, 305-323. · Zbl 0452.93018
[22] N. J. Theodorou, S. C. Tzafestas: Factorizability conditions for multidimensional polynomials. IEEE Trans. Automat. Control AC-30 (1985), 7, 697-700. · Zbl 0563.12019
[23] S. G. Tzafestas (ed.): Multidimensional Systems. Techniques and Applications. Marcel Dekker, New York 1986. · Zbl 0624.00025
[24] P. W. Wang, L. P. Rotchild: Factorizing over the integers. Comput. Math. 30 (1975), 324-336.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.