zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Poly-Bernoulli numbers. (English) Zbl 0887.11011
For every integer $k$, the poly-Bernoulli number $B_n^{(k)}$, $n=0,1,2$, is defined by $${1\over z} \text{Li}_k(z) \mid_{z=1 -e^{-x}} =\sum^\infty_{n=0} B_n^{(k)} {x^n\over n!},$$ where $\text{Li}_k(z)$ denotes the formal power series $\sum^\infty_{m=1} z^m/m^k$. When $k=1$, $B^{(1)}_n$ is the usual Bernoulli number. In the note under review the author gives an explicit formula for $B_n^{(k)}$ using the Stirling numbers of the second kind and shows the nice symmetric expression $$B_n^{(-k)} =B_k^{(-n)}.$$ As an application, he proves a von Staudt-type theorem in case of $k=2$ and a theorem of Vandiver on congruences for $B_n^{(1)}$.

11B68Bernoulli and Euler numbers and polynomials
11B73Bell and Stirling numbers
11A07Congruences; primitive roots; residue systems
Full Text: DOI EMIS Numdam EuDML
[1] Gould , H.W. : Explicit formulas for Bernoulli numbers , Amer. Math. Monthly 79 ( 1972 ), 44 - 51 . MR 306102 | Zbl 0227.10010 · Zbl 0227.10010 · doi:10.2307/2978125
[2] Ireland , K. and Rosen , M. : A Classical Introduction to Modern Number Theory , second edition. Springer GTM 84 ( 1990 ) MR 1070716 | Zbl 0712.11001 · Zbl 0712.11001
[3] Jordan , Charles: Calculus of Finite Differences , Chelsea Publ. Co. , New York , ( 1950 ) MR 183987 | Zbl 0041.05401 · Zbl 0041.05401
[4] Vandiver , H.S. : On developments in an arithmetic theory of the Bernoulli and allied numbers , Scripta Math. 25 ( 1961 ), 273 - 303 MR 142497 | Zbl 0100.26901 · Zbl 0100.26901