×

Spherical representations and mixed symmetric spaces. (English) Zbl 0887.22022

Summary: Let \(G/H\) be a symmetric space admitting a \(G\)-invariant hyperbolic cone field. For each such cone field we construct a local tube domain \(\Xi\) containing \(G/H\) as a boundary component. The domain \(\Xi\) is an orbit of an Ol’shanskii type semigroup \(\Gamma\). We describe the structure of the group \(G\) and the domain \(\Xi\). Furthermore we explore the correspondence between \(\Gamma\)-modules of holomorphic sections of line bundles over \(\Xi\) and spherical highest weight modules.

MSC:

22E47 Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.)
22E15 General properties and structure of real Lie groups
53C35 Differential geometry of symmetric spaces
54H15 Transformation groups and semigroups (topological aspects)
Full Text: DOI

References:

[1] N. Bourbaki, Groupes et algèbres de Lie, Chapitres 7 et 8, Masson, Paris, 1990. · Zbl 0199.35203
[2] J. Faraut, J. Hilgert, and G. Ólafsson, Spherical functions on ordered symmetric spaces, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 3, 927 – 965 (English, with English and French summaries). · Zbl 0810.43003
[3] Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. · Zbl 0451.53038
[4] J. Hilgert and K.-H. Neeb, Lie-Gruppen und Lie-Algebren, Vieweg Verlag, 1991. · Zbl 0760.22005
[5] Joachim Hilgert and Karl-Hermann Neeb, Lie semigroups and their applications, Lecture Notes in Mathematics, vol. 1552, Springer-Verlag, Berlin, 1993. · Zbl 0807.22001
[6] Joachim Hilgert and Karl-Hermann Neeb, Compression semigroups of open orbits in complex manifolds, Ark. Mat. 33 (1995), no. 2, 293 – 322. · Zbl 0855.22010 · doi:10.1007/BF02559711
[7] -, Spherical functions on Ol’shanskii space, J. Funct. Anal., 142 (1996), 446-493. CMP 97:05
[8] -, Structure Groups of Euclidian Jordan Algebras and their Representations, in preparation.
[9] J. Hilgert and G. Ólafsson, Causal Symmetric Spaces, Geometry and Harmonic Analysis, Perspectives in Mathematics 18, Academic Press, 1997. CMP 96:17 · Zbl 0931.53004
[10] J. Hilgert, G. Ólafsson, and B. Ørsted, Hardy spaces on affine symmetric spaces, J. Reine Angew. Math. 415 (1991), 189 – 218. · Zbl 0716.43006
[11] B. Krötz, On Hardy and Bergman spaces on complex Ol’shanskii semigroups, submitted.
[12] Bernhard Krötz and Karl-Hermann Neeb, On hyperbolic cones and mixed symmetric spaces, J. Lie Theory 6 (1996), no. 1, 69 – 146. · Zbl 0860.22004
[13] Jimmie D. Lawson, Polar and Ol\(^{\prime}\)shanskiĭ decompositions, J. Reine Angew. Math. 448 (1994), 191 – 219. · Zbl 0786.22012 · doi:10.1515/crll.1994.448.191
[14] Ottmar Loos, Symmetric spaces. I: General theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Ottmar Loos, Symmetric spaces. II: Compact spaces and classification, W. A. Benjamin, Inc., New York-Amsterdam, 1969.
[15] Karl-Hermann Neeb, The classification of Lie algebras with invariant cones, J. Lie Theory 4 (1994), no. 2, 139 – 183. · Zbl 0838.17003
[16] Karl-Hermann Neeb, Holomorphic representation theory. II, Acta Math. 173 (1994), no. 1, 103 – 133. · Zbl 0842.22004 · doi:10.1007/BF02392570
[17] Karl-Hermann Neeb, Holomorphic representations of Ol\(^{\prime}\)shanskiĭ semigroups, Semigroups in algebra, geometry and analysis (Oberwolfach, 1993) De Gruyter Exp. Math., vol. 20, de Gruyter, Berlin, 1995, pp. 241 – 271. · Zbl 0851.22014
[18] Karl-Hermann Neeb, Invariant convex sets and functions in Lie algebras, Semigroup Forum 53 (1996), no. 2, 230 – 261. · Zbl 0873.17009 · doi:10.1007/BF02574139
[19] -, On the complex and convex geometry of Ol’shanskii semigroups, Institut Mittag-Leffler, 1995-96, preprint.
[20] -, Holomorphy and Convexity in Lie Theory, Expositions in Mathematics, de Gruyter, in preparation. · Zbl 0936.22001
[21] G. Ólafsson and B. Ørsted, The holomorphic discrete series for affine symmetric spaces. I, J. Funct. Anal. 81 (1988), no. 1, 126 – 159. · Zbl 0678.22008 · doi:10.1016/0022-1236(88)90115-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.