Gorenflo, Rudolf; Luchko, Yuri Operational method for solving generalized Abel integral equation of second kind. (English) Zbl 0887.44003 Integral Transforms Spec. Funct. 5, No. 1-2, 47-58 (1997). The authors solve explicitly linear integral equations of second kind of Abel type by means of a modified Mikusiński operational calculus. In particular, the solution of \[ y(x)- \sum^m_{i=1} \lambda_i (I^{i\mu} y)(x)= f(x), \quad \mu>0,\;x>0 \] with \[ (I^\mu y)(x)= {1 \over \Gamma (\mu)} \int^x_0 (x-t)^{\mu-1} f(t)dt \] is expressed in terms of the Mittag-Leffler function \[ E^m_{\alpha, \beta}= \sum^\infty_{i=0} {m+i- 1\choose i} z^i/ \Gamma (\alpha i+ \beta). \] Reviewer’s remark: It is not necessary to modify the Mikusiński operational calculus, if one starts with the ring of Lebesgue-integrable functions instead of continuous functions. Reviewer: Lothar Berg (Rostock) Cited in 25 Documents MSC: 44A40 Calculus of Mikusiński and other operational calculi 45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type) Keywords:generalized Abel integral equation of second kind; Mikusiński operational calculus; Mittag-Leffler function PDF BibTeX XML Cite \textit{R. Gorenflo} and \textit{Y. Luchko}, Integral Transforms Spec. Funct. 5, No. 1--2, 47--58 (1997; Zbl 0887.44003) Full Text: DOI References: [1] Babenko Yu.I., Lectuer presented at ecole d’ete’ internationale :geometrie fractale et hyperbolique derivation fractionnaire et fractale (1994) [2] Dimovski I.H., Convolulional calculus (1982) [3] Ditkin V.A., Zh. Vychisl. Mat. i Mat. Fiz. 3 pp 223– (1963) [4] DOI: 10.1016/0041-5553(63)90022-3 · Zbl 0142.39602 [5] Gorenflo R., Proceedings of the Workshop for Transform Methods and Special Functins pp 61– (1995) [6] DOI: 10.1016/0898-1221(95)00031-S · Zbl 0824.44011 [7] Luchko Yu.F., Differ. Uravn. 30 pp 269– (1994) [8] Mainardi F., proceedings of the 12-th IMACSworld congress (1994) [9] Michalski M.W, Dissertationes Matheaticae (1993) [10] Mikusinski J., International Series of Monographs on Pure and Applied Mathematics 8 (1959) [11] Podlubny I., Slovak Academy of Sciences (1994) [12] Samko S.G., Fractional integrals and derivatives: theory and applications (1993) · Zbl 0818.26003 [13] DOI: 10.1007/978-94-011-1196-6 [14] Yosida K., Operational calculus: a theory of hyperfunctions (1984) · Zbl 0542.44001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.