zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multiple homoclinics for a class of singular Hamiltonian systems. (English) Zbl 0887.58017
The authors investigate a second order Hamiltonian system of the form $\ddot u + \nabla V(u) = 0$ in $\bbfR^n$, where the potential has a unique strict global maximum at the origin $p$ and a singular set $S \not\ni p$ such that $\bbfR^n \backslash S$ is open, path-connected and has non-trivial fundamental group $\pi_1 = G$. Some additional conditions on behaviour of $V$ near $S$ and $p$ are also assumed so that the class of systems under consideration includes, for instance, the classical $n$-body problem. Under some suitable conditions on $V$ and $G$ the authors prove the existence of multiple homoclinics, each one belonging to a different class of $G$.

37J99Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems
34C37Homoclinic and heteroclinic solutions of ODE
70F10$n$-body problems
Full Text: DOI
[1] Ambrosetti, A.; Zelati, V. Coti: Multiple homoclinic orbits for a class of conservative systems. Rend. sem. Mat. univ. Padova 89, 177-194 (1993) · Zbl 0806.58018
[2] Bertotti, M. L.; Bolotin, S. V.: A variational approach for homoclinics in almost periodic Hamiltonian systems. Comm. appl. Nonlinear anal. 2, 43-57 (1995) · Zbl 0858.34039
[3] M. L. Bertotti, L. Jeanjean, Multiplicity of homoclinic solutions for singular second order conservative systems, Proc. Roy. Soc. Edinburgh Sect. A · Zbl 0868.34001
[4] Bessi, U.: Multiple homoclinic orbits for autonomous singular potentials. Proc. roy. Soc. Edinburgh sect. A 124, 785-802 (1994) · Zbl 0812.58088
[5] Bolotin, S. V.: Existence of homoclinic motions. Vestnik moskov. Univ. ser. I mat. Mekh. 6, 98-103 (1980)
[6] Bolotin, S. V.: Variational criteria for non integrability and chaos in Hamiltonian systems. (1994)
[7] S. V. Bolotin, P. Negrini, Variational criterion for nonintegrability of a double pendulum · Zbl 0951.37029
[8] B. Buffoni, Infinitely many large amplitude homoclinic orbits for a class of autonomous Hamiltonian systems, J. Differential Equations · Zbl 0832.34032
[9] B. Buffoni, E. Séré, A global condition for quasi random behavior in a class of conservative systems
[10] P. Caldiroli, L. Jeanjean, Homoclinics and heteroclinics for a class of conservative singular Hamiltonian systems, J. Differential Equation · Zbl 0887.34044
[11] P. Caldiroli, M. Nolasco, Multiple homoclinic solutions for a class of autonomous singular systems inR2, Ann. Inst. H. Poincare Anal. Non Linéaire · Zbl 0907.58014
[12] K. Cieliebak, E. Séré, Pseudo-holomorphic curves and multiplicity of homoclinic orbits
[13] Zelati, V. Coti; Keland, I.; Séré, E.: A variational approach to homoclinic orbits in Hamiltonian systems. Math. ann. 288, 133-160 (1990) · Zbl 0731.34050
[14] Zelati, V. Coti; Rabinowitz, P. H.: Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. amer. Math. soc. 4, 693-727 (1991) · Zbl 0744.34045
[15] Gordon, W. B.: Conservative dynamical systems involving strong forces. Trans. amer. Math. soc. 204, 113-135 (1975) · Zbl 0276.58005
[16] Guckenheimer, J.; Holmes, P.: Nonlinear oscillations, dynamical systems and bifurcations of vector fields. (1983) · Zbl 0515.34001
[17] Hedlund, G. A.: The dynamics of geodesic flows. Bull. amer. Math. soc. 45, 241-260 (1939) · Zbl 65.0793.02
[18] Lions, P. L.: The concentration--compactness principle in the calculus of variations. Rev. mat. Iberoamericana 1, 145-201 (1985) · Zbl 0704.49005
[19] Melnikov, V. K.: On the stability of the center for periodic perturbations. Trans. Moscow math. Soc. 12, 1-57 (1963)
[20] Meyer, K. R.; Sell, G. R.: Melnikov transformations, Bernoulli bundles and almost periodic perturbations. Trans. amer. Math. soc. 314, 63-105 (1989) · Zbl 0707.34041
[21] P. Montecchiari, M. Nolasco, S. Terracini, Multiplicity of homoclinics for a class of time recurrent second order Hamiltonian systems · Zbl 0886.58014
[22] Morse, M.: A fundamental class of geodesics in any closed surface of genus greater than one. Trans. amer. Math. soc. 26, 25-61 (1924) · Zbl 50.0466.04
[23] H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, 1897, 1899, Gauthier--Villars, Paris
[24] P. H. Rabinowitz, Homoclinics for a singular Hamiltonian system, Geometric Analysis and the Calculus of Variations, J. Jost, International Press
[25] P. H. Rabinowitz, Homoclinics for an almost periodically forced Hamiltonian system, Topol. Methods Nonlinear Analysis
[26] Rabinowitz, P. H.: Multibump solutions for an almost periodically forced singular Hamiltonian system. Electron. J. Differential equations 1995 (1995) · Zbl 0828.34034
[27] Rotman, J. J.: An introduction to algebraic topology. Grad texts in math. 119 (1993)
[28] Séré, E.: Existence of infinitely many homoclinic orbits in Hamiltonian systems. Math. Z. 209, 27-42 (1992) · Zbl 0725.58017
[29] Séré, E.: Looking for the Bernoulli shift. Ann. inst. H. Poincaré anal. Non linéaire 10, 561-590 (1993)
[30] Tanaka, K.: Homoclinic orbits for a singular second order Hamiltonian system. Ann. inst. H. Poincaré anal. Non linéaire 7, 427-438 (1990) · Zbl 0712.58026
[31] Tanaka, K.: A note on the existence of multiple homoclinic orbits for a perturbed radial potential. Nonlinear differential equations appl. 1, 149-162 (1994) · Zbl 0819.34032