×

zbMATH — the first resource for mathematics

A three-dimensional finite element formulation for thermoviscoelastic orthotropic media. (English) Zbl 0888.73067
Summary: This paper develops a numerical algorithm for the solution of the uncoupled, quasistatic initial boundary value problem involving orthotropic linear viscoelastic media undergoing thermal and/or mechanical deformation. The constitutive equations, expressed in integral from involving the relaxation moduli, are transformed into an incremental algebraic form prior to development of the finite element formulation. This incrementalization is accomplished in closed form and results in a recursive relationship which leads to the need of solving a simple set of linear algebraic equations only for the extraction of the finite element solution. Use is made of a Dirichlet-Prony series representation of the relaxation moduli in order to derive the recursive relationship and thereby eliminate the storage problem that arises when dealing with materials possessing memory. Three illustrative example problems are included to demonstrate the method.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74K15 Membranes
74E10 Anisotropy in solid mechanics
80A20 Heat and mass transfer, heat flow (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ’Iscoelastic finite element formulation for the analysis of composites’, Ph.D. Dissertation, Texas A&M University, College Station, TX, 1995.
[2] Lee, J. Appl. Mech. 30 pp 127– (1963) · doi:10.1115/1.3630057
[3] Hopkins, J. Appl. Phys. 28 pp 906– (1957) · doi:10.1063/1.1722885
[4] Zak, J. Spacecr. Rockets 5 pp 270– (1968) · doi:10.2514/3.29237
[5] ’On the finite element analysis of two-dimensional problems with time dependent properties’, Ph.D. Dissertation University of California, Berkeley, CA, 1965.
[6] Taylor, Nucl. Eng. Des. 4 pp 21– (1966) · doi:10.1016/0029-5493(66)90023-9
[7] ’Approximate solutions in linear viscoelasticity’, Ph.D. Dissertation, University of California, Berkeley, CA, 1966.
[8] Taylor, Int. j. numer. methods eng. 2 pp 45– (1970) · Zbl 0252.73006 · doi:10.1002/nme.1620020106
[9] Zienkiewicz, Nucl. Eng. Des. 4 pp 406– (1966) · doi:10.1016/0029-5493(66)90069-0
[10] and , ’Pressure vessel analysis by finite element techniques’, Proc of Conf. on Prestressed Concrete Pressure Vessels, London, 1967, pp. 375-383.
[11] ’Finite elements in linear viscoelasticity’, Proc. 2nd Conf. on Matrix Methods in Struct Mech, AFFDLTR-68-150 Wright Patterson AFB, Dayton, OH, 1968, pp. 489-516.
[12] Zienkiewicz, Int. J. Mech. Sci. 10 pp 807– (1968) · doi:10.1016/0020-7403(68)90022-2
[13] Greenbaum, Nucl. Eng. Des. 7 pp 379– (1968) · doi:10.1016/0029-5493(68)90069-1
[14] Webber, J. Strain Anal. 4 pp 236– (1969) · doi:10.1243/03093247V043236
[15] de S. Lynch, Int. j. numer. methods eng. 1 pp 379– (1969) · doi:10.1002/nme.1620010405
[16] Batra, Int. j. numer. methods eng. 10 pp 767– (1976) · doi:10.1002/nme.1620100405
[17] Batra, Int. j. numer. methods eng. 11 pp 671– (1977) · Zbl 0354.73041 · doi:10.1002/nme.1620110406
[18] Purushothaman, Int. j. numer. methods eng. 26 pp 1471– (1988) · Zbl 0636.73068 · doi:10.1002/nme.1620260702
[19] Cyr, Comput. Struct. 3 pp 849– (1973) · doi:10.1016/0045-7949(73)90062-X
[20] Kim, Int. j. numer. methods eng. 11 pp 1865– (1977) · Zbl 0372.73075 · doi:10.1002/nme.1620111209
[21] Krishnaswamy, Int. j. numer. methods eng. 30 pp 371– (1990) · Zbl 0727.73078 · doi:10.1002/nme.1620300211
[22] Krishnaswamy, Polym. Eng. Sci. 32 pp 1086– (1992) · doi:10.1002/pen.760321606
[23] Bažant, Int. j. numer. methods eng. 4 pp 11– (1972) · Zbl 0255.73094 · doi:10.1002/nme.1620040104
[24] Carpenter, Int. j. numer. methods eng. 4 pp 357– (1972) · Zbl 0252.73026 · doi:10.1002/nme.1620040306
[25] Nagaraja, Comput. Struct. 11 pp 621– (1980) · Zbl 0437.73025 · doi:10.1016/0045-7949(80)90068-1
[26] Yadagiri, Comput. Struct. 27 pp 445– (1987) · Zbl 0624.73084 · doi:10.1016/0045-7949(87)90275-6
[27] Roy, Int. j. numer. methods eng. 26 pp 2531– (1988) · Zbl 0662.73046 · doi:10.1002/nme.1620261111
[28] Roy, Comput. Struct. 29 pp 1011– (1988) · Zbl 0667.73051 · doi:10.1016/0045-7949(88)90327-6
[29] Moran, J. Appl. Mech. 59 pp 95– (1992) · doi:10.1115/1.2899471
[30] Warby, Comput. Methods Appl. Mech. Eng. 97 pp 375– (1992) · Zbl 0764.73090 · doi:10.1016/0045-7825(92)90052-L
[31] Brinson, J. Appl. Mech. 59 pp 730– (1992) · doi:10.1115/1.2894035
[32] ’Finite element approximations in non-linear thermoviscoelasticity’, Lectures on Finite Element Methods in Continuum Mechanics (NATO Advanced Study Institute on Finite Element Methods in Continuum Mechanics), Lisbon, 1971, pp, 77-119.
[33] Oden, Comput. Struct 1 pp 603– (1971) · doi:10.1016/0045-7949(71)90032-0
[34] Henriksen, Comput. Struct. 18 pp 133– (1984) · Zbl 0514.73072 · doi:10.1016/0045-7949(84)90088-9
[35] Srinatha, Comput. Methods Appl. Mech. Eng. 25 pp 21– (1981) · Zbl 0442.73074 · doi:10.1016/0045-7825(81)90065-7
[36] Srinatha, Int. j. numer. methods eng. 18 pp 765– (1982) · Zbl 0482.73057 · doi:10.1002/nme.1620180511
[37] Lin, J. Compos. Mater. 23 pp 554– (1989) · doi:10.1177/002199838902300602
[38] Lin, J. Eng. Mater. Tech. 110 pp 113– (1988) · doi:10.1115/1.3226017
[39] Mechanics of Composite Materials, McGraw-Hill, New York, 1975.
[40] Lin, Int. J. Solids Struct. 27 pp 929– (1991) · Zbl 0734.73025 · doi:10.1016/0020-7683(91)90025-B
[41] Hilton, Compos. Eng. 3 pp 123– (1993) · doi:10.1016/0961-9526(93)90037-K
[42] Yi, AIAA J. 31 pp 2320– (1993) · Zbl 0793.73066 · doi:10.2514/3.11931
[43] Kennedy, J. Compos. Mater. 28 pp 902– (1994) · doi:10.1177/002199839402801002
[44] Lou, J. Compos. Mater. 5 pp 208– (1971) · doi:10.1177/002199837100500206
[45] Zocher, Int. J. Solids Struct.
[46] Ghazlan, Int. j. numer. methods eng. 38 pp 3315– (1995) · Zbl 0835.73037 · doi:10.1002/nme.1620381909
[47] Schapery, J. Compos. Mater. 1 pp 228– (1967) · doi:10.1177/002199836700100302
[48] Theory of Elasticity of an Anisotropic Body, Mir, Moscow, 1981, pp. 39-43.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.