zbMATH — the first resource for mathematics

Moment problem for effect algebras. (English) Zbl 0889.03056
The classical moment problem considers the question whether for a given sequence \(a_0,a_1,a_2,\ldots\) of non-negative reals there does exist a probability measure \(\mu\) on the Borel subsets of \([0,1]\) such that \(a_n=\int\limits_0^1t^nd\mu(t)\) for all non-negative integers \(n\). A generalized version of this problem is investigated in effect algebras and also for so-called generalized observables. Some solutions are presented. The relation to a certain property, the so-called E-property, is established.
Reviewer: H.Länger (Wien)

03G12 Quantum logic
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
Full Text: DOI
[1] Beltrametti, E. G., and Bugajski, S. (1995a). Quantum observables in classical frameworks,International Journal of Theoretical Physics,34, 1221–1229. · Zbl 0850.81019
[2] Beltrametti, E. G., and Bugajski, S. (1995b). A classical extension of quantum mechanics,Journal of Physics A: Mathematical and General,28, 3329–3343. · Zbl 0859.46049
[3] Beltrametti, E. G., and Bugajski, S. (1996). The Bell phenomenon in classical frameworks,Journal of Physics A: Mathematical and General,29, 247–261. · Zbl 0914.46060
[4] Beltrametti, E. G., and Bugajski, S. (n.d.). Effects algebras and statistical physical theories, submitted. · Zbl 0874.06009
[5] Busch, P., Lahti, P. J., and Mittelstaedt P. (1991).The Quantum Theory of Measurement, Springer-Verlag, Berlin. · Zbl 0868.46051
[6] Dvurečenskij, A. (1993).Gleason’s Theorem and its Applications, Kluwer, Dordrecht and Ister Science Press, Bratislava. · Zbl 0795.46045
[7] Dvurečenskij, A. (n.d.). Fuzzy set representation of some quantum structures,Fuzzy Sets and Systems, to appear.
[8] Foulis D. J., and Bennett, M. K. (1993). Tensor products of orthoalgebras,Order,10, 271–282. · Zbl 0798.06015
[9] Giuntini, R., and Greuling, H. (1989). Toward a formal language for unsharp properties,Foundations of Physics,19, 931–945.
[10] Hausdorff, F. (1921a). Summationsmethoden und Momentfolgen, I.Mathematische Zeitschrift,9, 74–109. · JFM 48.2005.01
[11] Hausdorff, F. (1921b). Summationsmethoden und Momentfolgen, II,Mathematische Zeitschrift,9, 280–299. · JFM 48.2005.02
[12] Hausdorff, F. (1923). Momentprobleme für ein endliches Interval,Mathematische Zeitschrift,16, 220–248. · JFM 49.0193.01
[13] Kadison, R. V. (1952). A generalized Schwarz inequality and algebraic invariants for operators and algebras,Annals of Mathematics,56, 494–503. · Zbl 0047.35703
[14] Kôpka, F., and Chovanec, F. (1994). D-posets,Mathematica Slovaca,44, 21–34. · Zbl 0789.03048
[15] Reed, M., and Simon, B. (1972).Methods of Modern Mathematical Physics I, Functional Analysis, Academic Press, New York. · Zbl 0242.46001
[16] Riesz, F., and Sz.-Nagy, B. (1955).Leçons d’Analyse Fonctionelle, 3rd ed, Akadémiai Kiadó, Budapest.
[17] Shohat, J., and Tamarkin, J. (1943).The Problem of Moments, American Mathemtical Society, Providence, Rhode Island. · Zbl 0063.06973
[18] Widder, D. V. (1946).Laplace Transform, Princeton University Press, Princeton, New Jersey. · Zbl 0060.24801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.