zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Algorithm 719: Multiprecesion translation and execution of FORTRAN programs. (English) Zbl 0889.68015
Summary: This paper describes two Fortran utilities for multiprecision computation. The first is a package of Fortran subroutines that perform a variety of arithmetic operations and transcendental functions on floating point numbers of arbitrarily high precision. This package is in some cases over 200 times faster than that of certain other packages that have been developed for this purpose. The second utility is a translator program, which facilitates the conversion of ordinary Fortran programs to use this package. By means of source directives (special comments) in the original Fortran program, the user declares the precision level and specifies which variables in each subprogram are to be treated as multiprecision. The translator program reads this source program and outputs a program with the appropriate multiprecision subroutine calls. This translator supports multiprecision integer, real, and complex datatypes. The required array space for multiprecision data types is automatically allocated. In the evaluation of computational expressions, all of the usual conventions for operator precedence and mixed mode operations are upheld. Furthermore, most of the Fortran-77 intrinsics, such as ABS, MOD, NINT, COS, EXP are supported and produce true multiprecision values.

68N15Programming languages
Algorithm 719
Full Text: DOI Link