[1] |
Aihara, K.; Takabe, T.; Toyoda, M.: Chaotic neural networks. Phys. lett. A 144, No. 6/7, 333-340 (1990) |

[2] |
Amari, S.: Characteristics of random nets of analog neuron-like elements. IEEE trans. On SMC 2, 643-657 (1972) · Zbl 0247.92006 |

[3] |
Chen, L.; Aihara, K.: Chaotic simulated annealing and its application to a maintenance scheduling problem n a power system. Int. symp. On nonlinear theory and its appl. 2, 695-700 (1993) |

[4] |
Chen, L.; Aihara, K.: Transient chaotic neural networks and chaotic simulated annealing. Towards the harnessing of chaos, 347-352 (1994) |

[5] |
Chen, L.; Aihara, K.: Chaotic simulated annealing for combinatorial optimization. Dynamic systems and chaos 1, 319-322 (1995) |

[6] |
Chen, L.; Aihara, K.: Chaotic simulated annealing by a neural network model with transient chaos. Neural networks 8, No. 6, 915-930 (1995) |

[7] |
Chen, L.: Chaos in transiently chaotic neural networks (one-dimension case). Technical report on power engineering, IEE Japan, PE-95-151 (1995) |

[8] |
Golubitsky, M.; Stewart, I.; Schaeffer, D. G.: Singularities and groups in bifurcation theory. (1988) · Zbl 0691.58003 |

[9] |
Guckenheimer, J.; Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. (1983) · Zbl 0515.34001 |

[10] |
Hata, M.: Euler’s finite difference scheme and chaos in rn. Proc. Japan acad. A 58, 178-181 (1982) · Zbl 0544.58015 |

[11] |
Hirsch, M. W.; Smale, S.: Differential equations, dynamical systems, and linear algebra. (1974) · Zbl 0309.34001 |

[12] |
Hopfield, J.: Neural networks and physical systems with emergent collective computational abilities. Proc. nalt. Acad. sci. (USA) 79, 2554-2558 (1982) |

[13] |
Hopfield, J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. natl. Acad. sci. (USA) 81, 3088-3092 (1984) |

[14] |
Hopfield, J.; Tank, D.: Neural computation of decisions in optimization problems. Biological cybernetics 52, 141-152 (1985) · Zbl 0572.68041 |

[15] |
Kirkpatrick, S.; Jr, C. D. Gelatt; Vecchi, M. P.: Optimization by simulated annealing. Science 220, 671-680 (1983) · Zbl 1225.90162 |

[16] |
Komuro, M.: Definitions of chaos. Chaos seminar (1994) |

[17] |
Kuznetsov, Y. A.: Elements of applied bifurcation theory. (1995) · Zbl 0829.58029 |

[18] |
Li, T. Y.; York, J. A.: Period three implies chaos. Amer. math. Monthly 82, 985-992 (1975) · Zbl 0351.92021 |

[19] |
Marcus, C. M.; Westervelt, R. M.: Dynamics of iterated-map neural networks. Phys. rev. A 40, 501-504 (1989) |

[20] |
Marotto, F. R.: Snap-back repellers imply chaos in rn. J. math. Anal. appl. 63, 199-223 (1978) · Zbl 0381.58004 |

[21] |
Peterson, C.; Anderson, J. R.: A mean field theory algorithm for neural networks. Complex systems 1, 995-1019 (1989) · Zbl 0657.68082 |

[22] |
Peterson, C.; Soderberg, B.: Artificial neural networks. Modern heuristic techniques for combinatorial problems (1993) |

[23] |
Pismen, L. M.; Rubinstein, B. Y.; Velarde, M. G.: On automated derivation of amplitude equations in nonlinear bifurcation problems. Int. J. Bifurt. and chaos (1996) · Zbl 1298.35180 |

[24] |
Rumelhart, D. E.; Group, J. L. Mcclelland The Pdp Research: Parallel distributed processing. 1 and 2 (1986) |

[25] |
Sato, M.; Ishii, S.: Bifurcations in mean field theory annealing. ATR technical report, TR-H-167 (1995) |

[26] |
Shiraiwa, K.; Kurata, M.: A generalization of a theorem of marotto. Proc. Japan acad. 55, 286-289 (1980) · Zbl 0451.58031 |

[27] |
Smale, S.: Diffeomorphisms with many periodic points. Differential and combinatorial topology, 63-80 (1968) |

[28] |
Tong, H.: Non-linear time series -- A dynamical system approach. (1990) · Zbl 0716.62085 |

[29] |
Urabe, M.: Galerkin’s procedure for nonlinear periodic systems. Arch. rat. Mech. anal. 72, 121-152 (1965) · Zbl 0133.35502 |

[30] |
Ushio, T.; Hirai, K.: Chaos in non-linear sampled-data control systems. Int. J. Control 38, 1023-1033 (1983) · Zbl 0525.93046 |

[31] |
Ushio, T.; Hirai, K.: Chaotic behavior in pulse-width modulated feedback systems. Trans. society of instrument and control engineers 21, 539-545 (1985) |

[32] |
Wells, D. M.: Solving degenerate optimization problems using networks of neural oscillators. Neural networks 5, 949-959 (1992) |

[33] |
Yamaguti, M.; Matano, H.: Euler’s finite difference scheme and chaos. Proc. Japan acad. A 55, 78-80 (1979) · Zbl 0434.39003 |