×

zbMATH — the first resource for mathematics

Stability and stabilization of delay differential systems. (English) Zbl 0889.93049
This paper considers the stability and stabilization of the following linear systems with delay \[ \dot y(t)= A_0y(t) +\sum^p_{i=1} A_iy (t-\tau_i) +EW(t), \quad t\geq t_0, \] under bounded additive disturbance. Conditions for respecting linear constraints and for asymptotic stability are obtained from a characterization of positive invariance properties for these systems.

MSC:
93D20 Asymptotic stability in control theory
34K20 Stability theory of functional-differential equations
93D15 Stabilization of systems by feedback
93D21 Adaptive or robust stabilization
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Castelan, E.B.; Hennet, J.-C., On invariant polyhedra of continuous-time linear systems, IEEE trans. autom. control, AC-38, 1680-1685, (1993) · Zbl 0790.93099
[2] Chen, J., On computing the maximal delay intervals for stability of linear delay systems, IEEE trans. autom. control, 40, 1087-1093, (1995) · Zbl 0840.93074
[3] Cheres, E.; Gutman, S.; Palmor, Z.J., Stabilization of uncertain dynamic systems including state delay, IEEE trans. autom. control, AC-34, 1199-1203, (1989) · Zbl 0693.93059
[4] Dórea, C.E.T.; Milani, B.E.A., Design of 1-q regulators for state-constrained continuous-time systems, IEEE trans. autom. control, AC-40, 544-548, (1995) · Zbl 0827.49023
[5] Hale, J.K., ()
[6] Hale, J.K.; Infante, E.F.; Tse, F.-S.P., Stability in linear delay equations, J. math. anal. applic., 105, 533-555, (1985) · Zbl 0569.34061
[7] Hennet, J.-C., Une extension du lemme de farkas et son application au problème de régulation linéaire sous contraintes, C.R. acad. sci. Paris, Sér. I, 308, 415-419, (1989) · Zbl 0850.93336
[8] Kamen, E.W., Linear systems with commensurate time delays: stability and stabilization independent of delay, IEEE trans. autom. control, AC-27, 367-375, (1982) · Zbl 0517.93047
[9] Kamen, E.W., Corrections to ‘linear systems with commensurate time delays: stability and stabilization independent of delay’, IEEE trans. autom. control, AC-28, 248-249, (1983)
[10] Klai, M.; Tarbouriech, S.; Burgat, C., Some independent-time-delay stabilization of linear systems with saturating controls, (), 1358-1363
[11] Lafay, J.F.; Conte, G., Analysis and design methods for delay systems, (), 2035-2069
[12] Lakshmikantham, V.; Leela, S., ()
[13] Lewis, R.M.; Anderson, B.D.O., Necessary and sufficient conditions for delay-independent stability of linear autonomous systems, IEEE trans. autom. control, AC-25, 735-739, (1980) · Zbl 0458.93043
[14] Niculescu, S.-I.; de Souza, C.E.; Dion, J.-M.; Dugard, L., Robust stability and stabilization of uncertain linear systems with state delay: multiple delays case, (), 475-480
[15] Schrijver, A., ()
[16] Seifert, G., Positively invariant closed-loop systems of delay differential equations, J. differential eqns, 22, 292-304, (1976) · Zbl 0332.34068
[17] Shen, J.-C.; Chen, B.-S.; Kung, F.-C., Memoryless stabilization of uncertain dynamic delay systems: Riccati equation approach, IEEE trans. autom. control, AC-36, 638-640, (1991)
[18] Stépán, G., Pitman research notes in mathematics, ()
[19] Vassilaki, M.; Bitsoris, G., Constrained regulation of linear continuous-time dynamical systems, Syst. control lett., 13, 247-252, (1989) · Zbl 0685.93056
[20] Wang, S.-S.; Chen, B.-S.; Lin, T.-P., Robust stability of uncertain time-delay systems, Int. J. control, 46, 963-976, (1987) · Zbl 0629.93051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.