×

zbMATH — the first resource for mathematics

Effect algebra counterexamples. (English) Zbl 0890.03035
Two effect algebra counterexamples are presented. The first shows that the standard effect algebra of operators on a Hilbert space is not a lattice and the second shows that the tensor product of two effect algebras need not exist.

MSC:
03G12 Quantum logic
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] AERTS D., DAUBECHIES I.: Physical justification of using tensor products to describe physical systems as one joint system. Helv. Phys. Acta 51 (1978), 661 675.
[2] CATTANEO G., NISTICO G.: Brouwer-Zadeh posets and three-valued Lukasiewicz posets. Internat. J. Fuzzy. Sets Sys. 33 (1989), 165-190. · Zbl 0682.03036
[3] DAVIES E. B.: Quantum Theory of Open Systems. Academic Press, London, 1976. · Zbl 0388.46044
[4] DAVIES E. B.-LEWIS J. T.: An operational approach to quantum probability. Comm. Math. Phys. 17 (1970), 239-260. · Zbl 0194.58304
[5] DVUREČENSKIJ A.: Tensor product of difference posets. Trans. Amer. Math. Soc. 347 (1995), 1043-1057. · Zbl 0859.03031
[6] DVUREČENSKIJ A., PULMANNOVÁ S.: Tensor products of D-posets and D-test spaces. Rep. Math. Phys. 34 (1994), 4251-4275. · Zbl 0830.03031
[7] FOULIS D.: Coupled physical systems. Found. Phys. 19 (1989), 905-922.
[8] FOULIS D., BENNETT M. K.: Tensor products of orthoalgebras. Order 10 (1993). 271-282. · Zbl 0798.06015
[9] FOULIS D., BENNETT M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325-1346. · Zbl 1213.06004
[10] GIUNTINI R. GREULING H.: Toward a formal language for unsharp properties. Found. Phys. 19 (1989), 931-945.
[11] GREECHIE R.: Orthomodular lattices admitting no states. J. Combin. Theory 10 (1971). 119-132. · Zbl 0219.06007
[12] HOLEVO A. S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland. Amsterdam, 1982. · Zbl 0497.46053
[13] KADISON R.: Order properties of bounded, self-adjoint operators. Proc. Amer. Math. Soc. 34 (1951), 505-510. · Zbl 0043.11501
[14] KAKUTANI S.: Concrete representatum of abstract (M)-spaces. Ann. of Math. 42 ( 1941). 994 1024.
[15] KLÄY M., RANDALL C., FOULIS D.: Tensor products and probability weights. Internat. J. Theoret. Phys. 26 (1987), 199-216. · Zbl 0641.46049
[16] KRAUS K.: States, Effects, and Operations. Springer-Verlag, Berlin. 1983. · Zbl 0545.46049
[17] KOPKA F., CHOVANEC F.: D-posets. Math. Slovaca 44 (1994), 21-34. · Zbl 0789.03048
[18] LAHTI P. J.-MACZYNSKI M. J.: Partial order of quantum effects. J. Math. Phys. 36 (1995), 1673-1680. · Zbl 0829.46060
[19] LOCK R.: The tensor product of generalized sample spaces which admit a unital set of dispersion-free weights. Found. Phys. 20 (1990), 477-498.
[20] LUDWIG G.: Foundations of Quantum Mechanics I. Springer-Verlag, Berlin, 1983. · Zbl 0509.46057
[21] PULMANNOVA S.: Tensor products of quantum logics. J. Math. Phys. 26 (1985), 1-5.
[22] WILCE A.: Tensor products of frame manuals. Internat. J. Theoret. Phys. 29 (1990), 805-814. · Zbl 0715.46047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.