×

zbMATH — the first resource for mathematics

Products of mode varieties and algebras of subalgebras. (English) Zbl 0890.08003
A mode is an idempotent and entropic algebra. The aim of this paper is to describe the structure of subalgebra modes of modes in a product of varieties, in particular varieties such that at least one of them is a variety of affine spaces. It is shown that certain reducts of such modes may be constructed as Płonka sums. This result is applied to describe subalgebra modes of some binary modes.

MSC:
08A05 Structure theory of algebraic structures
08A30 Subalgebras, congruence relations
20L05 Groupoids (i.e. small categories in which all morphisms are isomorphisms)
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] KNOEBEL A.: Product of independent algebras with finitely generated identities. Algebra Universalis 3 (1973), 147-151. · Zbl 0273.08004
[2] FREESE R.-McKENZIE R.-McNULTY G.-TAYLOR W.: Algebras, Lattices, Varieties. Vol. II. Wadsworth and Brooks/Cole
[3] GANTER B.-WERNER H.: Equational classes of Steiner systems. Algebra Universalis 5 (1975), 125-140. · Zbl 0327.08007
[4] GRATZER G.-LAKSER H.-PLONKA J.: Joins and direct products of equational classes. Canad. Math. Bull 12 (1969), 741-744, · Zbl 0188.04903
[5] JEZEK J.-KEPKA T.: The lattice of varieties of commutative abelian distributive groupoids. Algebra Universalis 5 (1973), 14-20.
[6] KEARNES K.: The structure of finite modes. Preprint. · Zbl 0848.08005
[7] McKENZIE R.-McNULTY G.-TAYLOR W.: Algebras, Lattices, Varieties. Vol.l. Wadsworth, Monterey, 1987. · Zbl 0611.08001
[8] MITSCHKE A.-WERNER H.: On groupoids representable by vector spaces over finite fields. Arch. Math (Basel) 24 (1973), 14-20. · Zbl 0255.20049
[9] PILITOWSKA A.-ROMANOWSKA A.-SMITH J. D. H.: Affine space and algebras of subalgebras. Algebra Universalis 34 (1995), 527-540. · Zbl 0844.08001
[10] PLONKA J.: On a method of construction of abstract algebras. Fund Math. 61 (1967), 183-189. · Zbl 0168.26701
[11] ROMANOWSKA A.-ROSZKOWSKA B.: On some groupoid modes. Demonstratio Math. 20 (1987), 277-290. · Zbl 0669.08005
[12] ROMANOWSKA A.-ROSZKOWSKA B.: Representations of n-cyclic groupoids. Algebra Universalis 26 (1989), 7-15. · Zbl 0669.20058
[13] ROMANOWSKA A.-SMITH J. D. H.: From affine to projective geometry via convexity. Lecture Notes in Math. 1149, Springer, New York, 1985, pp. 255-270. · Zbl 0577.08003
[14] ROMANOWSKA A.-SMITH J. D. H.: Modal Theory an Algebraic Approach to Order Geometry and Convexity. Helderman Verlag, Berlin, 1985. · Zbl 0553.08001
[15] ROMANOWSKA A.-SMITH J. D. H.: Subalgebra systems of idempotent entropic algebras. J. Algebra 120 (1989), 247-262. · Zbl 0663.08002
[16] ROMANOWSKA A.-SMITH J. D. H.: On the structure of the subalgebra systems of idempotent entropic algebras. J. Algebra 120 (1989), 263-283. · Zbl 0663.08002
[17] ROMANOWSKA A.-SMITH J. D. H.: Differential groupoids. Contributions to General Algebra 7, 1991, pp. 283-290. · Zbl 0744.20055
[18] ROMANOWSKA A.-SMITH J. D. H.: On the structure of semilattice sums. Czechoslovak. J. Math. 41 (1991), 24-43. · Zbl 0793.08010
[19] ROSZKOWSKA B.: The lattice of varieties of symmetric idempotent entropic groupoids. Demonstratio Math. 20 (1987), 259-275. · Zbl 0663.20065
[20] ROSZKOWSKA B.: On some varieties of symmetric idempotent entropic groupoids. Universal and Applied Algebra (K. Halkowska, B. Stawski, World Scientific. 1989, pp. 254-274. · Zbl 0762.20024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.