×

Unramified quaternion extensions of quadratic number fields. (English) Zbl 0890.11031

This paper is concerned with the construction of unramified quaternion extensions of number fields, particularly of quadratic number fields. (Quaternion extensions of the rationals always ramify over their biquadratic subfield.) For a quadratic number field, the existence of an unramified quaternion extension which is normal over the rationals is shown to be equivalent to an elementary condition on the factorization of its discriminant. It is further shown explicitly how to construct such extensions using elementary methods. An analogous result is stated for unramified dihedral extensions of quadratic number fields.

MSC:

11R21 Other number fields
11R11 Quadratic extensions
PDF BibTeX XML Cite
Full Text: DOI arXiv Numdam EuDML EMIS

References:

[1] Bachoc, C., Kwon, S.-H., Sur les extensions de groupe de Galois Ã4, Acta Arith.62 (1992), 1-10. · Zbl 0784.11051
[2] Ph., Cassou-Noguès, Jehanne, A., Parité du nombre de classes des S4extensions de Q et courbes elliptiques, J. Number Theory57 (1996), 366-384 · Zbl 0858.11058
[3] Cohn, H., A Classical Invitation to Algebraic Numbers and Class Fields, Springer Verlag1978. · Zbl 0688.12001
[4] Cohn, H., Quaternion compositum genus, J. Number Theory11 (1979), 399-411 · Zbl 0409.12002
[5] Damey, P., Martinet, J., Plongement d’une extension quadratique dans une extension quaternionienne, J. Reine Angew. Math.262/263 (1973), 323-338. · Zbl 0297.12010
[6] Dedekind, R., Konstruktion von Quaternionenkörpern, Ges. Werke II, Nachlaß, Braunschweig1931, 376-384.
[7] Fröhlich, A., Galois Module Structure of Algebraic Integers, , Springer VerlagHeidelberg, 1983 · Zbl 0501.12012
[8] Fujisaki, G., An elementary construction of Galois quaternionic extensions, Proc. Japan Acad.66 (1990), 80-83. · Zbl 0707.11077
[9] Furtwängler, P., Über das Verhalten der Ideale des Grundkörpers im Klassenkörper, Monatsh. Math. Phys.27 (1916), 1-15. · JFM 46.0246.01
[10] Grundman, H.G., Smith, T.L., Swallow, J.R., Groups of order 16 as Galois groups, Expo. Math.13 (1995), 289-319. · Zbl 0838.12004
[11] Hall, M., Senior, J.K., The groups of order 2n (n ≤ 6), Macmillan, New York1964. · Zbl 0192.11701
[12] Hettkamp, W., Quadratischer Restcharakter von Grundeinheiten und 2-Klassengruppen quadratischer Zahlkörper, Diss. Univ. Münster, 1981
[13] Horie, M., On central extensions of elementary abelian fields, J. Number Theory36 (1990), 95-107. · Zbl 0722.11058
[14] Jehanne, A., Sur les extensions de Q à groupe de Galois S4 et S4, Acta Arith.70 (1995), 259-276. · Zbl 0829.11059
[15] Jensen, C.U., Yui, N., Quaternion extensions, Algebraic Geometry and CommutativeAlgebra (1987), 155-182. · Zbl 0691.12011
[16] Kiming, I., Explicit classifications of some 2-extensions of a field of characteristic different from 2, Can. J. Math.42 (1990), 825-855. · Zbl 0725.12004
[17] Kisilevsky, H., Number fields with class number congruent to 4 mod 8 and Hilbert’s Theorem 94, J. Number Theory8 (1976), 271-279. · Zbl 0334.12019
[18] Koch, H., Über den 2-Klassenkörperturm eines quadratischen Zahlkörpers, J. Reine Angew. Math.214/215 (1963), 201-206 · Zbl 0123.03904
[19] Lang, S., Algebra, third edition, Addison-Wesley1993. · Zbl 0848.13001
[20] Ledet, A., On 2-groups as Galois groups, Canad. J. Math.47 (1995), no. 6, 1253-1273. · Zbl 0849.12006
[21] Lemmermeyer, F., Die Konstruktion von Klassenkörpern, Diss. Univ.Heidelberg1995. · Zbl 0956.11515
[22] Lemmermeyer, F., Class Field Towers, monograph, in preparation. · Zbl 0826.11052
[23] Louboutin, S., Calcul des nombres de classes relatifs: application aux corps quaternioniques a multiplication complexe, C. R. Acad. Sci. Paris317 (1993), 643-646. · Zbl 0795.11059
[24] Louboutin, S., Determination of all quaternion octic CM-fields with class number 2, J. London Math. Soc. (1996) · Zbl 0861.11064
[25] Louboutin, S., Okazaki, R., Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one, Acta Arith.67 (1994), 47-62. · Zbl 0809.11069
[26] Louboutin, S., Okazaki, R., The class number one problem for some non-abelian normal CM-fields of 2-power degrees, preprint 1996 · Zbl 0891.11054
[27] Martinet, J., Sur les extensions à groupe de Galois quaternionien, C. R. Acad. Sci. Paris274 (1972), 933-935. · Zbl 0235.12005
[28] Martinet, J., H8, Algebraic Number Fields: L-functions and Galois Properties (A. Fröhlich, ed.), 525-538, Acadenic PressNew York1977 · Zbl 0359.12014
[29] Minác, J., Smith, T.J., A characterization of C-fields via Galois groups, J. Algebra137 (1991), 1-11 · Zbl 0726.12002
[30] Rédei, L.Arithmetischer Beweis des Satzes über die Anzahl der durch vier teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper, J. Reine Angew. Math.171 (1934), 55-60 · Zbl 0009.05101
[31] Rédei, L., Reichardt, H., Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine Angew. Math.170 (1934), 69-74 · JFM 59.0192.01
[32] Reichardt, H., Über Normalkörper mit Quaternionengruppe, Math. Z.41 (1936), 218-222. · JFM 62.0169.02
[33] Rosenblüth, E., Die arithmetische Theorie und die Konstruktion der Quaternionenkörper auf klassenkörpertheoretischer Grundlage, Monatsh. Math. Phys.41 (1934), 85-125. · JFM 60.0126.01
[34] Smith, T.J., Extra-special groups of order 32 as Galois groups, Can. J. Math.46 (1994), 886-896 · Zbl 0810.12004
[35] Thomas, A.D., Wood, G.V., Group Tables, Shiva Publishing Ltd, Kent, UK 1980 · Zbl 0441.20001
[36] Vaughan, T.P., Constructing quaternionic fields, Glasgow Math. J.34 (1992), 43-54. · Zbl 0746.12003
[37] Witt, E., Konstruktion von galoisschen Körpern der Charakteristik p zu vorgegebener Gruppe der Ordnung pf, J. Reine Angew. Math.174 (1936), 237-245. · JFM 62.0110.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.