Abstract methods for synchronization and applications. (English) Zbl 0890.34052

Consider the abstract differential system \[ dx/dt= Ax+ G(x) \tag{*} \] in a real Banach space \(X\) where \(A\) is an infinitesimal generator of a \(C_0\)-semigroup, and \(G:X \to X\) is continuously differentiable and Lipschitzian on bounded sets. Assuming the existence of a Lyapunov-like function the author derives conditions to obtain uniform estimates for the global attractor of (*). In case of coupled systems \[ dx/dt =Ax+ G(x,\lambda_1) -K(x-y),\;dy/dt= Ay+ G(y,\lambda_2) -K(y-x) \tag{**} \] the same approach is used to establish synchronization in the sense that the solution components \(\overline x(t,x_1,y_1)\) and \(\overline y(t,x_1,y_1)\) satisfy \[ \bigl |\overline x(t,x_1,y_1) -\overline y(t,x_1, y_1) \bigr|\leq m_1 e^{-\alpha (t-t_0)} |x_1- y_1|+ m_2\gamma (\lambda_1-\lambda_2) \] for \(t\geq t_0\) where \(\alpha, m_1,m_2\) are positive constants, \(\gamma: \mathbb{R}\to \mathbb{R}_+\) is a continuous function obeying \[ \gamma (0)=0,\;\bigl|G(x,\lambda_2)-G(x,\lambda_1) \bigr |\leq\gamma (\lambda_2- \lambda_1). \] Some examples including coupled lasers and Lorenz systems are discussed.


34G20 Nonlinear differential equations in abstract spaces
34D45 Attractors of solutions to ordinary differential equations
Full Text: DOI


[1] Affraimovich V. S., Radiofizika 29 pp 1050– (1986)
[2] DOI: 10.1142/S0218127492000756 · Zbl 0876.34039 · doi:10.1142/S0218127492000756
[3] Carroll T. L., IEEE Trans. Circuits and Systems 38 pp 453– · doi:10.1109/31.75404
[4] DOI: 10.1142/S0218126693000071 · doi:10.1142/S0218126693000071
[5] Chua L. 0., Electronics Research Laboratory (1993)
[6] Cuomo K. M., ICASSP (1993)
[7] DOI: 10.1103/PhysRevA.47.4287 · doi:10.1103/PhysRevA.47.4287
[8] fijisaka H., Progress of Theoretical Physics 69 pp 32– · Zbl 1171.70306 · doi:10.1143/PTP.69.32
[9] Gills Z., Physical Review A 69 (1992)
[10] DOI: 10.1103/PhysRevLett.68.1259 · doi:10.1103/PhysRevLett.68.1259
[11] DOI: 10.1142/S0218127492000768 · doi:10.1142/S0218127492000768
[12] Krein S. G., Translations of Mathematical Monographs 28 (1971)
[13] DOI: 10.1103/PhysRevE.47.2357 · doi:10.1103/PhysRevE.47.2357
[14] DOI: 10.1137/0150098 · Zbl 0712.92006 · doi:10.1137/0150098
[15] DOI: 10.1063/1.165833 · Zbl 0906.34025 · doi:10.1063/1.165833
[16] Pazy A., Semigroups of Linear Operators and Applications do Partial Differential Equations (1983) · Zbl 0516.47023
[17] Rodrigues H. M., Center for Dynamical Systems and Nonlinear Studies, Georgia Institute of Technology (1994)
[18] DOI: 10.1016/0022-0396(87)90159-8 · Zbl 0639.35007 · doi:10.1016/0022-0396(87)90159-8
[19] Rul’kov, N. F. and Volkovskii, A. R. 1993. ”Synchronized chaos in electronic circuits, Proceedings of SPIE conference on Exploiting chaos and nonlinearities”. San Diego.
[20] DOI: 10.1016/0375-9601(93)90687-U · doi:10.1016/0375-9601(93)90687-U
[21] Verichev N. N., Methods of the Qual. Theory of Diff. Eq. pp 47– (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.