×

Regularization of linear least squares problems by total bounded variation. (English) Zbl 0890.49010

Summary: We consider the problem \[ \text{Minimize}\quad {1\over 2} |Tu-z|^2_Y+{\alpha\over 2} |u|^2_{L^2}+ \beta \int_\Omega|\nabla u|\text{ over }u\in K\cap X,\tag{P} \] where \(\alpha\geq 0\), \(\beta>0\), \(K\) is a closed convex subset of \(L^2(\Omega)\), and the last additive term denotes the BV-seminorm of \(u\), \(T\) is a linear operator from \(L^2\cap\text{BV}\) into the observation space \(Y\). We formulate necessary optimality conditions for (P). Then we show that (P) admits, for given regularization parameters \(\alpha\) and \(\beta\), solutions which depend in a stable manner on the data \(z\). Finally, we study the asymptotic behavior when \(\alpha= \beta\to 0\). The regularized solutions \(\widehat u_\beta\) of (P) converge to the \(L^2\cap \text{BV}\) minimal norm solution of the unregularized problem. The rate of convergence is \(\beta^{{1\over 2}}\) when the minimum-norm solution \(\widehat u\) is smooth enough.

MSC:

49K27 Optimality conditions for problems in abstract spaces

References:

[1] J.-P. Aubin, I. Ekeland: Applied NonlinearAnalysis, Wiley-Interscience, New York, 1984. Zbl0641.47066 MR749753 · Zbl 0641.47066
[2] J. Baumeister: Stable Solutions of Inverse Problems, Vieweg, Braunschweig, 1987. Zbl0623.35008 MR889048 · Zbl 0623.35008
[3] E. Casas, K. Kunisch, C. Pola: Regularization by functions of bounded variation and applications to image enhancement, preprint. MR1692383 · Zbl 0942.49014
[4] G. Chavent, K. Kunisch: Convergence of Tikhonov regularization for constrained ill-posed inverse problems, Inverse Problems, 10 ( 1994), 63-76. Boston, 1985. Zbl0799.65061 MR1259438 · Zbl 0799.65061 · doi:10.1088/0266-5611/10/1/006
[5] V. Girault, P. A. Raviart: Finite Elements, Methods for Navier-Stokes Equations, Springer, Berlin, 1984. Zbl0585.65077 MR851383 · Zbl 0585.65077
[6] E. Giusti: Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, 1984. Zbl0545.49018 MR775682 · Zbl 0545.49018
[7] C. W. Groetsch: The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind, Pitman, Boston, 1984. Zbl0545.65034 MR742928 · Zbl 0545.65034
[8] A. K. Louis: Inverse und schlechtgestellte Probleme, Teubner, Stuttgart, 1989. Zbl0667.65045 MR1002946 · Zbl 0667.65045
[9] V. G. Mazja: Sobolev Spaces, Springer, Berlin, 1985. MR817985
[10] W. Rudin: Real and Complex Analysis, McGraw Hill, London, 1970. Zbl0925.00005 · Zbl 0925.00005
[11] L. Rudin, S. Osher, E. Fatemi: Nonlinear total variation based noise removal algorithm, Physica D, 60 ( 1992), 259-268. Zbl0780.49028 · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[12] R. Temam: Mathematical Problems in Plasticity, Gauthier-Villars, Kent, 1985. MR711964 · Zbl 0457.73017
[13] C. Vogel, M. Oman: Iterative methods for total variation denoising, preprint. Zbl0847.65083 MR1375276 · Zbl 0847.65083 · doi:10.1137/0917016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.