×

Algorithmic recognition of 3-manifolds. (English) Zbl 0890.57027

The classification problem for 3-manifolds is to find a one-to-one correspondence between the set of (closed, orientable) 3-manifolds and the natural numbers. This article discusses recent progress in algorithmically classifying 3-manifolds by homeomorphism type.

MSC:

57N10 Topology of general \(3\)-manifolds (MSC2010)
57M40 Characterizations of the Euclidean \(3\)-space and the \(3\)-sphere (MSC2010)
Full Text: DOI

References:

[1] I. R. Aitchison, S. Matsumoto and J. H. Rubinstein, Immersed surfaces in the figure-8 knot complement, preprint. · Zbl 0924.57018
[2] Marc Culler, C. McA. Gordon, J. Luecke, and Peter B. Shalen, Dehn surgery on knots, Ann. of Math. (2) 125 (1987), no. 2, 237 – 300. · Zbl 0633.57006 · doi:10.2307/1971311
[3] Michael Hartley Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982), no. 3, 357 – 453. · Zbl 0528.57011
[4] David Gabai, Foliations and the topology of 3-manifolds. II, J. Differential Geom. 26 (1987), no. 3, 461 – 478. David Gabai, Foliations and the topology of 3-manifolds. III, J. Differential Geom. 26 (1987), no. 3, 479 – 536. · Zbl 0627.57012
[5] C. McA. Gordon and J. Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989), no. 2, 371 – 415. , https://doi.org/10.1090/S0894-0347-1989-0965210-7 C. McA. Gordon and J. Luecke, Knots are determined by their complements, Bull. Amer. Math. Soc. (N.S.) 20 (1989), no. 1, 83 – 87.
[6] Matthew A. Grayson, Shortening embedded curves, Ann. of Math. (2) 129 (1989), no. 1, 71 – 111. · Zbl 0686.53036 · doi:10.2307/1971486
[7] Wolfgang Haken, Theorie der Normalflächen, Acta Math. 105 (1961), 245 – 375 (German). , https://doi.org/10.1007/BF02559591 Horst Schubert, Bestimmung der Primfaktorzerlegung von Verkettungen, Math. Z. 76 (1961), 116 – 148 (German). , https://doi.org/10.1007/BF01210965 Wolfgang Haken, Ein Verfahren zur Aufspaltung einer 3-Mannigfaltigkeit in irreduzible 3-Mannigfaltigkeiten, Math. Z. 76 (1961), 427 – 467 (German). · Zbl 0111.18803 · doi:10.1007/BF01210988
[8] Wolfgang Haken, Some results on surfaces in 3-manifolds, Studies in Modern Topology, Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.), 1968, pp. 39 – 98.
[9] J. Hass, J. Lagarias, and N. Pippinger, The computational complexity of knot and link algorithms, preprint.
[10] Geoffrey Hemion, The classification of knots and 3-dimensional spaces, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1992. · Zbl 0771.57001
[11] John Hempel, 3-Manifolds, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. Ann. of Math. Studies, No. 86. · Zbl 0345.57001
[12] John E. Hopcroft and Jeffrey D. Ullman, Introduction to automata theory, languages, and computation, Addison-Wesley Publishing Co., Reading, Mass., 1979. Addison-Wesley Series in Computer Science. · Zbl 0426.68001
[13] William Jaco and Ulrich Oertel, An algorithm to decide if a 3-manifold is a Haken manifold, Topology 23 (1984), no. 2, 195 – 209. · Zbl 0545.57003 · doi:10.1016/0040-9383(84)90039-9
[14] William Jaco and J. H. Rubinstein, A piecewise linear theory of minimal surfaces in 3-manifolds, Miniconference on geometry and partial differential equations (Canberra, 1985) Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 10, Austral. Nat. Univ., Canberra, 1986, pp. 99 – 110.
[15] William Jaco and Jeffrey L. Tollefson, Algorithms for the complete decomposition of a closed 3-manifold, Illinois J. Math. 39 (1995), no. 3, 358 – 406. · Zbl 0858.57018
[16] K. Johannsen, Classification problems in low-dimensional topology, geometric and algebraic topology, Banach Center Publ., vol. 18, PWN, Warsaw, 1986.
[17] L. Lusternik and L. Schnirelman, Sur le probleme de trois geodesiques fermees sur les surface de genre \(0\), C. R. Acad. Sci. Paris 189 (1929).
[18] S. V. Matveev, Algorithms for the recognition of the three-dimensional sphere (after A. Thompson), Mat. Sb. 186 (1995), no. 5, 69 – 84 (Russian, with Russian summary); English transl., Sb. Math. 186 (1995), no. 5, 695 – 710. · Zbl 0849.57010 · doi:10.1070/SM1995v186n05ABEH000037
[19] E. E. Moise, Affine structures in 3-manifolds, Ann. of Math. 55 (1952). ; ; · Zbl 0047.16802
[20] R. Rannard, Computational enumeration of immersed normal surfaces in the figure eight knot complement, preprint. · Zbl 0927.57020
[21] Joachim H. Rubinstein, An algorithm to recognize the 3-sphere, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 601 – 611. · Zbl 0864.57009
[22] -, The solution to the recognition problem for \(S^3\), Lectures, Haifa, Israel, May 1992.
[23] -, Polyhedral minimal surfaces, Heegaard splittings and decision problems for 3-manifolds, Proc. Georgia Topology Conf., Amer. Math. Soc./Intl. Press, 1993.
[24] Wolfgang Haken, Theorie der Normalflächen, Acta Math. 105 (1961), 245 – 375 (German). , https://doi.org/10.1007/BF02559591 Horst Schubert, Bestimmung der Primfaktorzerlegung von Verkettungen, Math. Z. 76 (1961), 116 – 148 (German). , https://doi.org/10.1007/BF01210965 Wolfgang Haken, Ein Verfahren zur Aufspaltung einer 3-Mannigfaltigkeit in irreduzible 3-Mannigfaltigkeiten, Math. Z. 76 (1961), 427 – 467 (German). · Zbl 0111.18803 · doi:10.1007/BF01210988
[25] Stephen Smale, Generalized Poincaré’s conjecture in dimensions greater than four, Ann. of Math. (2) 74 (1961), 391 – 406. · Zbl 0099.39202 · doi:10.2307/1970239
[26] S. Simon and F. Smith, On the existence of embedded minimal 2-spheres in the 3-sphere, endowed with an arbitrary metric, preprint.
[27] M. Stocking, Almost normal surfaces in 3-manifolds, Ph.D. thesis, UC Davis, 1996. · Zbl 0933.57016
[28] Abigail Thompson, Thin position and the recognition problem for \?³, Math. Res. Lett. 1 (1994), no. 5, 613 – 630. · Zbl 0849.57009 · doi:10.4310/MRL.1994.v1.n5.a9
[29] Abigail Thompson, Thin position and bridge number for knots in the 3-sphere, Topology 36 (1997), no. 2, 505 – 507. · Zbl 0867.57009 · doi:10.1016/0040-9383(96)00010-9
[30] Friedhelm Waldhausen, Recent results on sufficiently large 3-manifolds, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 21 – 38. · Zbl 0391.57011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.