Bhattacharyya, B. B.; Richardson, G. D.; Franklin, L. A. Asymptotic inference for near unit roots in spatial autoregression. (English) Zbl 0890.62018 Ann. Stat. 25, No. 4, 1709-1724 (1997). Summary: Asymptotic inference for estimators of \((\alpha_n, \beta_n)\) in the spatial autoregressive model \[ Z_{ij} (n)= \alpha_nZ_{i-1,j} (n)+ \beta_nZ_{i,j-1} (n)-\alpha_n\beta_n Z_{i-1,j-1} (n)+\varepsilon_{ij} \] is obtained when \(\alpha_n\) and \(\beta_n\) are near unit roots. When \(\alpha_n\) and \(\beta_n\) are reparameterized by \(\alpha_n= e^{c/n}\) and \(\beta_n= e^{d/n}\), it is shown that if the “one-step Gauss-Newton estimator” of \(\lambda_1 \alpha_n+ \lambda_2 \beta_n\) is properly normalized and embedded in the function space \(D([0,1]^2)\), the limiting distribution is a Gaussian process.The key idea in the proof relies on a maximal inequality for a two-parameter martingale which may be of independent interest. A simulation study illustrates the speed of convergence and goodness-of-fit of these estimators for various sample sizes. Cited in 13 Documents MSC: 62F12 Asymptotic properties of parametric estimators 62M30 Inference from spatial processes 60F17 Functional limit theorems; invariance principles 60G44 Martingales with continuous parameter Keywords:spatial autoregressive process; near unit roots; Gauss-Newton estimation; central limit theory; maximal inequality; two-parameter martingale × Cite Format Result Cite Review PDF Full Text: DOI References: [1] BASU, S. 1990. Analy sis of first-order spatial bilateral ARMA models. Ph.D. dissertation, Univ. Wisconsin, Madison.Z. [2] BASU, S. and REINSEL, G. C. 1992. A note on properties of spatial Yule Walker estimators. J. Statist. Comput. Simulation 41 243 255. Z. · Zbl 0775.62254 · doi:10.1080/00949652208811404 [3] BASU, S. and REINSEL, G. C. 1993. Properties of the spatial unilateral first-order ARMA model. Adv. in Appl. Probab. 25 631 648. Z. JSTOR: · Zbl 0780.62072 · doi:10.2307/1427527 [4] BASU, S. and REINSEL, G. C. 1994. Regression models with spatially correlated errors. J. Amer. Statist. Assoc. 89 88 99. Z. · Zbl 0795.62073 · doi:10.2307/2291204 [5] BHATTACHARy YA, B. B., KHALIL, T. M. and RICHARDSON, G. D. 1996. Gauss Newton estimation of parameters for a spatial autoregression model. Statist. Probab. Lett. 28 173 179. Z. · Zbl 0847.62079 · doi:10.1016/0167-7152(95)00114-X [6] BICKEL, P. J. and WICHURA, M. J. 1971. Convergence criteria for multiparameter stochastic processes and some applications. Ann. Math. Statist. 42 1656 1670. Z. · Zbl 0265.60011 · doi:10.1214/aoms/1177693164 [7] BILLINGSLEY, P. 1968. Convergence of Probability Measures. Wiley, New York. Z. · Zbl 0172.21201 [8] BOBKOSKI, M. J. 1983. Hy pothesis testing in nonstationary time series. Ph.D. dissertation, Univ. Wisconsin, Madison. [9] BROWN, B. M. 1971. Martingale central limit theorems. Ann. Math. Statist. 42 59 66. Z. Z. · Zbl 0218.60048 · doi:10.1214/aoms/1177693494 [10] CHAN, N. H. and WEI, C. Z. 1987. Asy mptotic inference for nearly nonstationary AR 1 processes. Ann. Statist. 15 1050 1063. Z. · Zbl 0638.62082 · doi:10.1214/aos/1176350492 [11] COX, D. D. and LLATAS, I. 1991. Maximum likelihood ty pe estimation for nearly nonstationary autoregressive time series. Ann. Statist. 19 1109 1128. Z. · Zbl 0742.62084 · doi:10.1214/aos/1176348240 [12] CULLIS, B. R. and GLEESON, A. C. 1991. Spatial analysis of field experiments an extension to two dimensions. Biometrics 47 1449 1460. Z. [13] FULLER, W. A. 1976. Introduction to Statistical Time Series. Wiley, New York. Z. · Zbl 0353.62050 [14] JAIN, A. K. 1981. Advances in mathematical models for image processing. Proc. IEEE 69 502 528. Z. [15] KHALIL, T. M. 1991. A study of the doubly geometric process, stationary cases and a nonstationary case. Ph.D. dissertation, North Carolina State Univ., Raleigh. Z. [16] MARTIN, R. J. 1979. A subclass of lattice processes applied to a problem in planar sampling. Biometrika 66 209 217. Z. JSTOR: · Zbl 0404.62017 · doi:10.1093/biomet/66.2.209 [17] MARTIN, R. J. 1990. The use of time-series models and methods in the analysis of agricultural field trials. Comm. Statist. Theory Methods 19 55 81. Z. · doi:10.1080/03610929008830187 [18] MCLEISH, D. L. 1974. Dependent central limit theorems and invariance principles. Ann. Probab. 2 620 628. Z. · Zbl 0287.60025 · doi:10.1214/aop/1176996608 [19] PHILLIPS, P. C. B. 1987. Towards a unified asy mptotic theory for autoregression. Biometrika 74 535 547. Z. JSTOR: · Zbl 0654.62073 · doi:10.1093/biomet/74.3.535 [20] TJOSTHEIM, D. 1978. Statistical spatial series modeling. Adv. in Appl. Probab. 10 130 154. Z. JSTOR: · Zbl 0383.62060 · doi:10.2307/1426722 [21] TJOSTHEIM, D. 1981. Autoregressive modeling and spectral analysis of array data in the plane. IEEE Trans. on Geoscience and Remote Sensing 19 15 24. Z. [22] TJOSTHEIM, D. 1983. Statistical spatial series modelling II: some further results on unilateral processes. Adv. in Appl. Probab. 15 562 584. Z. JSTOR: · Zbl 0525.62084 · doi:10.2307/1426619 [23] WALSH, J. B. 1986. Martingales with a multidimensional parameter and stochastic integrals in the plane. Lectures in Probability and Statistics. Lecture Notes in Math. 1215 329 491. Springer, New York. Z. · Zbl 0602.60044 [24] WHITE, J. S. 1958. The limiting distribution of the serial correlation coefficient in the explosive case. Ann. Math. Statist. 29 1188 1197. · Zbl 0099.13004 · doi:10.1214/aoms/1177706450 [25] RALEIGH, NORTH CAROLINA 27695 ORLANDO, FLORIDA 32816 E-MAIL: gary r@pegasus.cc.ucf.edu TERRE HAUTE, INDIANA 47809 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.