Derfel, G.; Iserles, A. The pantograph equation in the complex plane. (English) Zbl 0891.34072 J. Math. Anal. Appl. 213, No. 1, 117-132 (1997). The subject matter is focused on two functional differential equations. First of them is the pantograph equation with involution on the complex plane: \[ y'(z)=\sum_{k=0}^{m-1} \left[ a_k y(\omega^k z) + b_k y(r \omega^k z) + c_k y'(r \omega^k z) \right] , \] where \(a_k, b_k, c_k \in \mathbb{C}, k= 0, 1, \dots , m-1,\) are given, \(r \in (0,1)\), and \(\omega\) is the primitive root of unity. The second one is the pantograph equation of the second type: \[ y(z)= \sum_{j=1}^{l} \sum_{k=1}^{n} a_{j,k} y^{(k)} (\omega_j z), \] \(a_{j,k}, \omega_j \in \mathbb{C},\) supplemented by appropriate initial conditions at the origin. The results concern the existence and uniqueness of solutions and their asymptotic behavior. Reviewer: S.Yanchuk (Kyïv) Cited in 45 Documents MSC: 34K20 Stability theory of functional-differential equations 34K25 Asymptotic theory of functional-differential equations 34M99 Ordinary differential equations in the complex domain Keywords:functional differential equations; pantograph equation; existence; uniqueness; asymptotic behavior; stability PDF BibTeX XML Cite \textit{G. Derfel} and \textit{A. Iserles}, J. Math. Anal. Appl. 213, No. 1, 117--132 (1997; Zbl 0891.34072) Full Text: DOI References: [1] Adams, R., On the linear ordinary \(q\), Ann. of Math., 30, 195-205 (1929) · JFM 55.0263.01 [2] Davis, P. J., Circulant Matrices (1979), Wiley: Wiley New York · Zbl 0418.15017 [3] Derfel, G., On the existence of analytic and almost-periodic solutions of functional-differential equations with linearly transformed arguments, Trans. Tbilisi Univ., 46-48 (1977) [4] Derfel, G., On compactly supported solutions of a class of functional-differential equations, Modern Problems of Function Theory and Functional Analysis (1980), Karaganda Univ. Press [5] Derfel, G., Functional-differential and functional equations with rescaling, Oper. Theory: Adv. Appl., 8, 100-111 (1995) · Zbl 0841.34069 [6] Derfel, G.; Dyn, N.; Levin, D., Generalized refinement equation and subdivision processes, J. Approx. Theory, 80, 272-297 (1995) · Zbl 0823.45001 [7] Flamant, P., Sur une equation differentielle fonctionelle lineaire, Palermo Rend., 48, 135-208 (1924) · JFM 50.0651.03 [8] Hille, E., Analytic Function Theory (1962), Blaisdell: Blaisdell Waltham [9] Iserles, A., On the generalized pantograph functional-differential equation, European J. Appl. Math., 4, 1-38 (1993) · Zbl 0767.34054 [10] Iserles, A.; Liu, Y., On neutral functional-differential equations with proportional delays, J. Math. Anal. Appl., 207, 73-95 (1997) · Zbl 0873.34066 [11] Iserles, A.; Liu, Y., On pantograph integro-differential equations, J. Integral Appl., 6, 213-237 (1994) · Zbl 0816.45005 [12] Kato, T.; McLeod, J. B., The functional-differential equation \(yx ay x by x\), Bull. Amer. Math. Soc., 77, 891-937 (1971) · Zbl 0236.34064 [13] Liu, Y., Asymptotic behaviour of functional-differential equations with proportional time delays, European J. Appl. Math., 7, 11-30 (1996) · Zbl 0856.34078 [14] Ockendon, J. R.; Tayler, A. B., The dynamics of a current collection system for an electric locomotive, Proc. Roy. Soc. London Ser. A, 322, 447-468 (1971) [15] Skorik, S.; Spiridonov, V., Self-similar potentials and the \(q\), Lett. Math. Phys., 28, 59-74 (1993) · Zbl 0778.17012 [16] Wiener, J., Generalized Solutions of Functional-Differential Equations (1993), World Scientific: World Scientific Singapore · Zbl 0874.34054 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.