Moriyama, Kazunori; Tonegawa, Satoshi; Tsutsumi, Yoshio Almost global existence of solutions for the quadratic semilinear Klein-Gordon equation in one space dimension. (English) Zbl 0891.35142 Funkc. Ekvacioj, Ser. Int. 40, No. 2, 313-333 (1997). The authors consider the lower estimate of the life span of solutions of the Cauchy problem of the Klein-Gordon equation with quadratic nonlinearity in one space dimension when the nonlinearity does not depend on the second derivatives, and the initial conditions depend on a small parameter. The crucial parts in the proof are(1) to use the normal form technique of Shatah to transform the quadratic nonlinearity in the cubic one, and, thus to establish a priori decay estimates and energy estimates;(2) to use the decay estimate for the inhomogeneous Klein-Gordon equation due to Georgieu. Reviewer: L.Vazquez (Madrid) Cited in 19 Documents MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 35L70 Second-order nonlinear hyperbolic equations Keywords:Klein-Gordon equation; normal forms; decay estimates; small parameter PDF BibTeX XML Cite \textit{K. Moriyama} et al., Funkc. Ekvacioj, Ser. Int. 40, No. 2, 313--333 (1997; Zbl 0891.35142) OpenURL