zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analyticity and differentiability of semigroups associated with elastic systems with damping and gyroscopic forces. (English) Zbl 0891.35156
The authors study a second order evolution equation of the type $\ddot{w}(t)+B\dot{w}(t)+Aw(t)=0$ in a Hilbert space $H$ where $A,B$ are nonnegative operators in $H$, which models a damping elastic system. A new variational formulation of the problem is introduced and well-posedness is proved by means of semigroup theory. Sufficient conditions are found for the corresponding semigroup to be analytic and differentiable.

35Q72Other PDE from mechanics (MSC2000)
47D06One-parameter semigroups and linear evolution equations
74B05Classical linear elasticity
Full Text: DOI
[1] Adams, R. A.: Sobolev spaces. (1975) · Zbl 0314.46030
[2] Banks, H. T.; Ito, K.; Wang, Y.: Well posedness for damped second order systems with unbounded input operators. Diff. int. Eqns. 8, 587-606 (1995) · Zbl 0817.35014
[3] J. A. Burns, B. B. King, A note on the mathematical modelling of damped second order systems · Zbl 0904.35043
[4] S. Chen, K. Liu, Z. Liu, Spectrum and stability for elastic systems with global or local Kelvin-Voigt damping · Zbl 0924.35018
[5] Crandall, M. G.; Pazy, A.: On the differentiability of weak solutions of a differential equation in Banach space. J. math. Mech. 18, 1007-1016 (1969) · Zbl 0177.42901
[6] Chen, G.; Russell, D. L.: A mathematical model for linear elastic systems with structural damping. Quart. appl. Math. 39, 433-454 (1981/1982) · Zbl 0515.73033
[7] Chen, S.; Triggiani, R.: Proof of extensions of two conjectures on structural damping for elastic systems, the case $12\leqslant{\alpha}$. Pacific J. Math. 39, 15-55 (1989) · Zbl 0633.47025
[8] Chen, S.; Triggiani, R.: Gevrey class semigroups arising from elastic systems with gentle dissipation: the case $0{\alpha}$. Proc. AMS 110, 401-415 (1990) · Zbl 0718.47009
[9] Chen, G.; Zhou, J.: Vibration and damping in distributed systems. (1994)
[10] Fattorini, H. O.: Second order linear differential equations in Banach spaces. (1985) · Zbl 0564.34063
[11] Huang, F.: On the holomorphic property of the semigroup associated with linear elastic systems with structural damping. Acta math. Sci. (Chinese) 55, 271-277 (1985) · Zbl 0636.73047
[12] Huang, F.: A problem for linear elastic systems with structural damping. Acta math. Sci. (Sinica) 6, 107-113 (1986)
[13] Huang, F.: On the mathematical model for linear elastic systems with analytic damping. SIAM J. Control and optimization 26, 714-724 (1988) · Zbl 0644.93048
[14] F. Huang, K. Liu, G. Chen, Differentiability of the semigroup associated with a structural damping model, Proc. 28th IEEE CDC, Tampa, Dec, 1989, 2034, 2038
[15] Huseyin, K.: Vibrations and stability of multiple parameter systems. (1978) · Zbl 0399.73032
[16] Kato, T.: Perturbation theory for linear operators. (1980) · Zbl 0435.47001
[17] Krasnoselskii, M. A.; Zabreiko, P. P.; Pustylik, E. L.; Sobolevskii, P. E.: Integral operators in space of summable functions. (1966)
[18] Lagnese, J.: Boundary stabilization of thin plates. SIAM studies in applied mathematics 10 (1989) · Zbl 0696.73034
[19] Lions, J. L.; Magenes, E.: Nonhomogeneous boundary value problems and applications. (1972) · Zbl 0223.35039
[20] Z. Liu, J. Yong, Qualitative properties of certainC0, Adv. Diff. Eqs.
[21] Pazy, A.: Semigroups of linear operators and applications to partial differential equations. (1983) · Zbl 0516.47023
[22] Russell, D. L.: On mathematical models for the elastic beam with frequency-proportional damping. (1992)
[23] Russell, D. L.: A comparison of certain elastic dissipation mechanisms via decoupling and projection techniques. Quarterly appl. Math. 49, 373-396 (1991) · Zbl 0725.73064
[24] S. Taylor, 1989, Chapter ”Gevrey Semigroups, School of Mathematics, University of Minnesota
[25] Temam, R.: Infinite-dimensional dynamical systems in mechanics and physics. Appl. math. Sci. 68 (1988) · Zbl 0662.35001
[26] Xiao, T.; Liang, J.: On complete second order linear differential equations in Banach spaces. Pacific J. Math. 142, 175-195 (1990) · Zbl 0663.34053