×

A solution to a problem on invertible disjointness preserving operators. (English) Zbl 0891.47024

Summary: We construct an invertible disjointness preserving operator \(T\) on a normed lattice such that \(T^{-1}\) is not disjointness preserving.

MSC:

47B60 Linear operators on ordered spaces
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Yuri A. Abramovich, Multiplicative representation of disjointness preserving operators, Nederl. Akad. Wetensch. Indag. Math. 45 (1983), no. 3, 265 – 279. · Zbl 0527.47025
[2] Ju. A. Abramovič, A. I. Veksler, and A. V. Koldunov, Operators that preserve disjunction, Dokl. Akad. Nauk SSSR 248 (1979), no. 5, 1033 – 1036 (Russian).
[3] Charalambos D. Aliprantis and Owen Burkinshaw, Positive operators, Pure and Applied Mathematics, vol. 119, Academic Press, Inc., Orlando, FL, 1985. · Zbl 0608.47039
[4] J. Araújo, E. Beckenstein, and L. Narici, When is a separating map biseparating?, Arch. Math. (Basel) 67 (1996), no. 5, 395 – 407. · Zbl 0858.54022
[5] J. J. Font and S. Hernández, On separating maps between locally compact spaces, Arch. Math. (Basel) 63 (1994), no. 2, 158 – 165. · Zbl 0805.46049
[6] C. B. Huijsmans and W. A. J. Luxemburg , Positive operators and semigroups on Banach lattices, Springer, Dordrecht, 1992. Acta Appl. Math. 27 (1992), no. 1-2. · Zbl 0783.47052
[7] C. B. Huijsmans and B. de Pagter, Invertible disjointness preserving operators, Proc. Edinburgh Math. Soc. (2) 37 (1994), no. 1, 125 – 132. · Zbl 0807.47024
[8] C. B. Huijsmans and A. W. Wickstead, The inverse of band preserving and disjointness preserving operators, Indag. Math. (N.S.) 3 (1992), no. 2, 179 – 183. · Zbl 0787.47031
[9] Krzysztof Jarosz, Automatic continuity of separating linear isomorphisms, Canad. Math. Bull. 33 (1990), no. 2, 139 – 144. · Zbl 0714.46040
[10] A. V. Koldunov, Hammerstein operators preserving disjointness, Proc. Amer. Math. Soc. 123 (1995), no. 4, 1083 – 1095. · Zbl 0827.47051
[11] M. Meyer, Quelques propriétés des homomorphismes d’espaces vectoriels réticulés, Equipe d’Analyse Paris VI, Preprint 131, 1979.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.