×

Approximation of partial sums of arbitrary i. i. d. random variables and the precision of the usual exponential upper bound. (English) Zbl 0891.62007

Summary: This paper quantifies the degree to which exponential bounds can be used to approximate tail probabilities of partial sums of arbitrary i.i.d. random variables. The introduction of a single truncation allows the usual exponential upper bound to apply usefully whenever the summands are arbitrary i.i.d. random variables. More specifically, let \(n\) be a fixed natural number and let \(Z\), \(Z_1\), \(Z_2, \dots, Z_n\) be arbitrary i.i.d. random variables. We construct a function \(F_{Z,n}(a)\), derived from the probability of occurrence of one or more “large” summands plus an upper bound of exponential type, such that for some constant \(C_* >0\) (independent of \(Z\), \(n\) and \(a)\) and all real \(a\), \[ C_*F^2_{Z,n} (a)\leq P \left(\sum^n_{j= 1} Z_j\geq na\right) \leq 2F_{Z,n}(a). \] Furthermore, examples show that the upper and lower bounds are achievable.

MSC:

62E17 Approximations to statistical distributions (nonasymptotic)
60E15 Inequalities; stochastic orderings
60F10 Large deviations
62E20 Asymptotic distribution theory in statistics
60F05 Central limit and other weak theorems
Full Text: DOI

References:

[1] BENNETT, G. 1962. Probability inequalities for sums of independent random variables. J. Amer. Statist. Assoc. 57 33 45. Z. · Zbl 0104.11905 · doi:10.2307/2282438
[2] CHAGANTY, N. R. and SETHURAMAN, J. 1993. Strong large deviation and local limit theorems. Ann. Probab. 21 1671 1690. Z. · Zbl 0786.60026 · doi:10.1214/aop/1176989136
[3] CRAMER, H. 1938. On a new limit theorem in the theory of probability. In Colloquium on the \' Theory of Probability. Hermann, Paris. Z.
[4] FUK, D. KH. and NAGAEV, S. V. 1971. Probability inequalities for sums of independent random variables. Theory Probab. Appl. 16 643 660. Z. · Zbl 0259.60024 · doi:10.1137/1116071
[5] HAHN, M. G. and KLASS, M. J. 1995. Uniform local probabilities approximations: improvements on Berry Esseen. Ann. Probab. 23 446 463. Z. · Zbl 0831.60048 · doi:10.1214/aop/1176988394
[6] HOEFFDING, W. 1963. Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13 30. Z. JSTOR: · Zbl 0127.10602 · doi:10.2307/2282952
[7] JAIN, N. C. and PRUITT, W. E. 1987. Lower tail probability estimates for subordinators and nondecreasing random walks. Ann. Probab. 15 75 102. Z. · Zbl 0617.60023 · doi:10.1214/aop/1176992257
[8] MARSHALL, A. W. 1960. A one-sided analog of Kolmogorov’s inequality. Ann. Math. Statist. 31 483 487. Z. · Zbl 0099.13105 · doi:10.1214/aoms/1177705912
[9] NAGAEV, S. V. 1965. Some limit theorems for large deviations. Theory Probab. Appl. 10 214 235. Z. · Zbl 0144.18704 · doi:10.1137/1110027
[10] NEY, P. and NUMMELIN, E. 1987. Markov additive processes II. Large deviations. Ann. Probab. 15 593 609. Z. · Zbl 0625.60028 · doi:10.1214/aop/1176992160
[11] OSIPOV, A. 1971. On asymptotic expansions for the distributions of sums of independent random variables. Theory Probab. Appl. 16 333 343. Z. · Zbl 0248.60015 · doi:10.1137/1116030
[12] PINELIS, I. S. and UTEV, S. A. 1989. Exact exponential bounds for sums of independent random variables. Theory. Probab. Appl. 34 340 346. Z. · Zbl 0693.60036 · doi:10.1137/1134032
[13] STATULEVICIUS, V. A. 1966. On large deviations. Z. Wahrsch. Verw. Gebiete 6 133 144. Z. · Zbl 0158.36207 · doi:10.1007/BF00537136
[14] VAN BEECK, P. 1972. An application of Fourier methods to the problem of sharpening the Berry Esseen inequality. Z. Wahrsch. Verw. Gebiete 23 187 196. · Zbl 0238.60020 · doi:10.1007/BF00536558
[15] MEDFORD, MASSACHUSETTS 02155 BERKELEY, CALIFORNIA 94720 E-MAIL: klass@stat.berkeley.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.