Representation theory and sheaves on the Bruhat-Tits building. (English) Zbl 0892.22012

The Bruhat-Tits building \(\mathcal I\) of a connected reductive algebraic group \(G\) over a \(p\)-adic field \(K\) displays in a geometric way the inner structure of the locally compact group \(G(K)\) of the set of \(K\)-points of \(G\) like the classification of the maximal subgroups of \(G(K)\) or the theory of its parahoric subgroups. One might consider \(\mathcal I\) as a kind of skeleton of an analogue of a real symmetric space because of that it clearly appears as an important tool in the study of the theory of smooth representations of \(G(K)\).
In the paper under review, the authors develop a systematic and conceptual theory which gives a functorial way to pass from smooth representations of \(G(K)\) to equivariant objects on \(\mathcal I\). In a cohomological theory, they also associate (again functorially) \(G(K)\)-equivariant sheaves on \(\mathcal I\) with smooth representations of \(G(K)\). Their main result in this aspect is the computation of the cohomology with compact support of the sheaves coming from an irreducible smooth representation of \(G(K)\).
For any facet \(F\) of \(\mathcal I\) the authors construct certain decreasing filtrations \({\mathcal P}_F\supset U_F^{(0)}\supset U_F^{(1)}\supset\cdots\supset U_F^{(e)}\supset\cdots\) of its pointwise stabilizer \({\mathcal P}_F\) in \(G(K)\) by compact open subgroups \(U_F^{(e)}\) and establish some nice properties of that filtration (especially they study how the groups \(U_F^{(e)}\) behave if the facet \(F\) is moved along in the geodesic in the building \(\mathcal I\)). Similar filtrations appear in papers of Prasad and Raghunathan and of Moy and Prasad.
Let \(e\) be a fixed “level”. A homological functor \(\gamma_e\) is constructed from smooth representations of \(G(K)\) to \(G(K)\)-equivariant coefficient systems on \(\mathcal I\): the coefficient system \(\gamma_e(V)\) corresponding to a representation \(V\) of \(G(K)\) is formed by associating with a facet \(F\) the subspace of the \(U_G^{(e)}\)-invariant vectors in \(V\). One of the main results says that at least for any finitely generated smooth representation \(V\) of \(G(K)\) it is possible to choose the level \(e\) large enough so that the chain complex \(\gamma_e(V)\) is an exact resolution of \(V\) in the category of all smooth representations of \(G(K)\).
The authors also define a general theory of Euler-Poincaré functions for finite length smooth representations of \(G(K)\) which are pseudo-coefficients and such that their elliptic orbital integrals coincide with the Harish-Chandra character of the given representation. This leads to a Hopf-Lefschetz type trace formula for the Harish-Chandra character of an elliptic element which, combined with results of Kazhdan, also leads to a proof of the general orthogonality formula for Harish-Chandra characters which was conjectured by Kazhdan.
Since the polysimplicial structure of the building \(\mathcal I\) is locally finite it is possible to associate with the coefficient system \(\gamma_e(V)\) also a complex of cochains with finite support. Let \(\chi\) denote a fixed character of the connected component of the center of \(G\), let \(\text{Alg}_\chi(G)\) be the category of all those smooth representations of \(G(K)\) on which that component acts through \(\chi\), and let \({\mathcal H}_\chi\) be the \(\chi\)-Hecke algebra of \(G(K)\). If \(V\) is an admissible representation in \(\text{Alg}_\chi(G)\) then the functor \(\operatorname{Hom}_G(\cdot,{\mathcal H}_\chi)\) transforms the chain complex of \(\gamma_e(V)\) into the cochain complex of \(\gamma_e(\widetilde V)\) where \(\widetilde V\) is the contragredient representation of \(V\). In case \(V\) is of finite length and \(e\) is large enough the chain complex of \(\gamma_e(V)\) is a projective resolution of \(V\) in \(\text{Alg}_\chi(G)\). It follows that the cochain complex \(\gamma_e(\widetilde V)\) computes the Ext-groups \({\mathcal E}^\star(V):=\text{Ext}^\star_{\text{Alg}_\chi(G)}(V,{\mathcal H}_\chi)\). It is proven that for an arbitrary irreducible smooth representation \(V\) the groups \({\mathcal E}^\star(V)\) vanish except in a single degree \(d(V)\), that \({\mathcal E}^{d(V)}\) again is an irreducible smooth representation, and moreover \({\mathcal E}^{d(V)}({\mathcal E}^{d(V)}(V))=V\).
The sheaves under consideration are extended to the Borel-Serre compactification of \(\mathcal I\) in such a way that the cohomology at the boundary becomes computable (since the stabilizers of boundary points are parabolic subgroups this can be achieved by using the Jacquet modules of the representations as the stalks at the boundary points), then the cohomology at the boundary is calculated by adapting the strategy of Deligne and Lusztig for reductive groups over finite fields. The induced functor on the category of finite length smooth representations of \(G(K)\) coincides with the duality functor defined using the spherical building only by the reviewer [Trans. Am. Math. Soc. 347, No. 6, 2179-2189 (1995; Zbl 0827.22005); Erratum, ibid. 348, 4687-4690 (1996; Zbl 0827.22005)]. The fact that the duality functor preserves irreducibility was in the case \(G=\text{GL}_N\) a conjecture due to Zelevinsky (for \(\text{GL}_N\) this conjecture has been proved in 1994 by Procter in a completely different way by using the explicit construction given by Bushnell and Kutzko of the admissible dual of that group).
Reviewer: A.M.Aubert (Paris)


22E50 Representations of Lie and linear algebraic groups over local fields
18F30 Grothendieck groups (category-theoretic aspects)
Full Text: DOI Numdam EuDML


[1] A.-M. Aubert,Théorie de Mackey généralisée : Un théorème de décomposition, Preprint, 1992.
[2] A.-M. Aubert, Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d’un groupe réductifp-adique,Transact. AMS 347 (1995), 2179–2189; Erratum,ibid. 348 (1996). · Zbl 0827.22005 · doi:10.2307/2154931
[3] J. Bernstein, Le ”centre” de Bernstein,in Bernstein, Deligne, Kazhdan, Vigneras,Représentations des groupes réductifs sur un corps local, Paris, Hermann, 1984.
[4] J. Bernstein, On the support of Plancherel measure,J. Geom. Physics 5 (1988), 663–710. · Zbl 0725.43010 · doi:10.1016/0393-0440(88)90024-1
[5] J. Bernstein, P. Deligne, D. Kazhdan, Trace Paley-Wiener theorem for reductive \(\mathfrak{p} - adic\) groups,J. d’analyse math. 47 (1986), 180–192. · Zbl 0634.22011 · doi:10.1007/BF02792538
[6] J. Bernstein, A. Zelevinsky, Induced representations of reductive \(\mathfrak{p} - adic\) groups I,Ann. sci. ENS 10 (1977), 441–472. · Zbl 0412.22015
[7] P. Blanc, Projectifs dans la catégorie des G-modules topologiques,C. R. Acad. Sci. Paris 289 (1979), 161–163. · Zbl 0442.18007
[8] A. Borel,Linear Algebraic Groups, 2nd Enlarged Edition, Berlin-Heidelberg-New York, Springer 1991. · Zbl 0726.20030
[9] A. Borel, G. Harder, Existence of discrete cocompact subgroups of reductive groups over local fields,J. reine angew. Math. 298 (1978), 53–64. · Zbl 0385.14014
[10] A. Borel, J.-P. Serre, Cohomologie d’immeubles et de groupes S-arithmétiques,Topology 15 (1976), 211–232. · Zbl 0338.20055 · doi:10.1016/0040-9383(76)90037-9
[11] A. Borel, J. Tits, Groupes réductifs,Publ. Math. IHES 27 (1965), 55–152.
[12] A. Borel, N. Wallach,Continuous cohomology, discrete subgroups, and representations of reductive groups, inAnn. Math. Studies 94, Princeton Univ. Press, 1980. · Zbl 0443.22010
[13] N. Bourbaki,Groupes et algèbres de Lie, Chap. 4–6, Paris, Masson, 1981. · Zbl 0483.22001
[14] N. Bourbaki,Topologie générale, Chap. 5–10, Paris, Hermann, 1974.
[15] K. S. Brown,Buildings, Berlin-Heidelberg-New York, Springer, 1989.
[16] F. Bruhat, J. Tits, Groupes réductifs sur un corps local I. Données radicielles valuées,Publ. Math. IHES 41 (1972), 5–251; II. Schémas en groupes. Existence d’une donnée radicielle valuée,Publ. Math. IHES 60 (1984), 5–184.
[17] P. Cartier, Representations of \(\mathfrak{p} - adic\) groups: A survey, inAutomorphic Forms, Representations and L-Functions, Proc. Symp. Pure Math. 33 (1), 111–155, American Math. Soc., 1979.
[18] W. Casselman, Introduction to the theory of admissible representations of \(\mathfrak{p} - adic\) reductive groups, Preprint.
[19] W. Casselman, A new non-unitary argument forp-adic representations,J. Fac. Sci. Univ. Tokyo 28 (1981), 907–928. · Zbl 0519.22011
[20] L. Clozel, Invariant harmonic analysis on the Schwartz space of a reductivep-adic group, inHarmonic Analysis on Reductive Groups (Eds. Barker, Sally),Progress in Math. 101, 101–121, Boston-Basel-Berlin, Birkhäuser, 1991.
[21] C. W. Curtis, G. I. Lehrer, J. Tits, Spherical Buildings and the Character of the Steinberg Representation,Invent. Math. 58 (1980), 201–210. · Zbl 0435.20024 · doi:10.1007/BF01390251
[22] C. Curtis, I. Reiner,Representation Theory of Finite Groups and Associative Algebras, New York-London, J. Wiley, 1962. · Zbl 0131.25601
[23] P. Deligne, G. Lusztig, Duality for Representations of a Reductive Group over a Finite Field I,J. Algebra 74 (1982), 284–291. · Zbl 0482.20027 · doi:10.1016/0021-8693(82)90023-0
[24] J. Dixmier,C*-Algebras, Amsterdam, North-Holland, 1982.
[25] A. Dold,Lectures on Algebraic Topology, Berlin-Heidelberg-New York, Springer, 1980. · Zbl 0434.55001
[26] P. Gabriel, M. Zisman,Calculus of Fractions and Homotopy Theory, Berlin-Heidelberg-New York, Springer, 1967. · Zbl 0186.56802
[27] R. Godement,Topologie algébrique et théorie des faisceaux, Paris, Hermann, 1964.
[28] Harish-Chandra, G. Van Dijk,Harmonic Analysis on Reductive p-adic Groups, Lect. Notes Math., vol.162, Berlin-Heidelberg-New York, Springer, 1970. · Zbl 0202.41101
[29] R. Hartshorne,Residues and duality,Lect. Notes Math., vol.20, Berlin-Heidelberg-New York, Springer, 1966. · Zbl 0212.26101
[30] A. Hattori, Rank element of a projective module,Nagoya J. Math. 25 (1965), 113–120. · Zbl 0142.28001
[31] M. Kashiwara, P. Schapira,Sheaves on Manifolds, Berlin-Heidelberg-New York, Springer, 1990. · Zbl 0709.18001
[32] S. Kato, Duality for representations of a Hecke algebra,Proc. AMS 119 (1993), 941–946. · Zbl 0836.22024 · doi:10.1090/S0002-9939-1993-1215028-8
[33] D. Kazhdan, Cuspidal geometry ofp-adic groups,J. d’analyse math. 47 (1986), 1–36. · Zbl 0634.22009 · doi:10.1007/BF02792530
[34] D. Kazhdan, Representations of groups over close local fields,J. d’analyse math. 47 (1986), 175–179. · Zbl 0634.22010 · doi:10.1007/BF02792537
[35] R. Kottwitz, Tamagawa numbers,Ann. Math. 127 (1988), 629–646. · Zbl 0678.22012 · doi:10.2307/2007007
[36] A. Moy, G. Prasad, Unrefined minimal K-types forp-adic groups,Invent. math. 116 (1994), 393–408. · Zbl 0804.22008 · doi:10.1007/BF01231566
[37] G. Prasad, M. S. Raghunatan, Topological central extensions of semi-simple groups over local fields,Ann. Math. 119 (1984), 143–201. · Zbl 0552.20025 · doi:10.2307/2006967
[38] K. Procter,The Zelevinsky Duality Conjecture for GLN, Thesis, King’s College, London, 1994.
[39] J. Rogawski, An application of the building to orbital integrals,Compositio Math. 42 (1981), 417–423. · Zbl 0471.22020
[40] P. Schneider, U. Stuhler, Resolutions for smooth representations of the general linear group over a local field,J. reine angew. Math. 436 (1993), 19–32. · Zbl 0780.20026
[41] J.-P. Serre, Cohomologie des groupes discrets, inProspects in Mathematics, Ann. Math. Studies 70, 77–169, Princeton Univ. Press, 1971. · Zbl 0229.57016
[42] A. Silberger,Introduction to harmonic analysis on reductive p-adic groups, Princeton Univ. Press, 1979. · Zbl 0458.22006
[43] J. Tits, Reductive groups over local fields, inAutomorphic Forms, Representations and L-Functions, Proc. Symp. Pure Math. 33 (1), 29–69, American Math. Soc., 1979.
[44] M.-F. Vigneras, On formal dimensions for reductivep-adic groups, inFestschrift in honor of I. I. Piatetski-Shapiro (Eds. Gelbart, Howe, Sarnak), Part I, 225–266,Israel Math. Conf. Proc. 2, Jerusalem, Weizmann Science Press, 1990.
[45] A. Zelevinsky, Induced representations of reductivep-adic groups II,Ann. Sci. ENS 13 (1980), 165–210. · Zbl 0441.22014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.