Toader, Gh. Some mean values related to the arithmetic-geometric mean. (English) Zbl 0892.26015 J. Math. Anal. Appl. 218, No. 2, 358-368 (1998). Let \[ r_n(t)= (a^n\cos^2t+ b^n\sin^2 t)^{1/n}\qquad (n\neq 0,\text{ integer}); \]\[ r_0(t)= \lim_{n\to\infty} r_n(t)= a^{\cos^2 t}b^{\sin^2 t} \qquad (a, b>0). \] For a strictly monotonic function \(p:\mathbb{R}^+\to\mathbb{R}\) let \(M_{p,n}(a,b)= p^{-1}\left({1\over 2\pi} \int^{2\pi}_0 p(r_n(t))dt\right)\). For \(n\in\{-1,+1,+2\}\) earlier investigations by H. Haruki and T. M. Rassias characterized the functions \(p\) for which \(M_{p,n}\) is one of the: arithmetic-geometric mean, arithmetic mean, geometric mean, or the square root mean. In this interesting paper, the author gives unique proofs for arbitrary \(n\). For this purpose certain functional equations, recurrence relations and connections with the complete elliptic integrals are exploited. Reviewer: József Sándor (Cluj-Napoca) Cited in 1 ReviewCited in 52 Documents MSC: 26D15 Inequalities for sums, series and integrals 33C75 Elliptic integrals as hypergeometric functions Keywords:inequalities; arithmetic-geometric mean; elliptic integrals PDF BibTeX XML Cite \textit{Gh. Toader}, J. Math. Anal. Appl. 218, No. 2, 358--368 (1998; Zbl 0892.26015) Full Text: DOI References: [1] Aczél, J., The notion of mean value, Norske Vid. Selsk. Forh. (Trondheim), 19, 83-86 (1946) · Zbl 0030.02601 [2] Bullen, P. S.; Mitrinović, D. S.; Vasić, P. M., Means and Their Inequalities (1988), Reidel: Reidel Dordrecht · Zbl 0687.26005 [3] Gini, C., Means (1958), Unione Tipografico-Editrice Torinese: Unione Tipografico-Editrice Torinese Milan [4] Haruki, H., New characterizations of the arithmetic-geometric mean of Gauss and other well-known mean values, Publ. Math. Debrecen, 38, 323-332 (1991) · Zbl 0746.39004 [5] Haruki, H.; Rassias, T. M., New characterizations of some mean-values, J. Math. Anal. Appl., 202, 333-348 (1996) · Zbl 0878.39005 [6] Vamanamurthy, M. K.; Vuorinen, M., Inequalities for means, J. Math. Anal. Appl., 183, 155-166 (1994) · Zbl 0802.26009 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.