×

On the multifractal analysis of measures. (English) Zbl 0892.28006

Summary: The multifractal formalism is shown to hold for a large class of measures.

MSC:

28A80 Fractals
28A78 Hausdorff and packing measures
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] T. Bedford, Hausdorff dimension and box dimension in self-similar sets, inProceedings Conference on Topology and Measure (V. Binz, GDR, 1987). · Zbl 0743.54020
[2] T. Bedford, Applications of dynamical systems theory to fractals. A study of cookie-cutter Cantor sets, Preprint TU Delft, the Netherlands. · Zbl 0741.58011
[3] A. S. Besicovitch, On the sum of digits of real numbers represented in the dyadic system,Math. Ann. 110:321-330 (1934). · Zbl 0009.39503
[4] P. Billingsley,Ergodic Theory and Information (Wiley, 1965).
[5] T. Bohr and D. Rand, The entropy function for characteristic exponents,Physica 25D:387-398 (1987). · Zbl 0643.58006
[6] H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations,Ann. Math. Stat. 23:493-507 (1952). · Zbl 0048.11804
[7] P. Collet, J. L. Lebowitz, and A. Porzio, The dimension spectrum of some dynamical systems,J. Stat. Phys. 47:609-644 (1987). · Zbl 0683.58023
[8] H. G. Eggleston, The fractional dimension of a set defined by decimal properties,Q. J. Math. Oxford, Ser. 20 1949:31-46. · Zbl 0031.20801
[9] U. Frisch and G. Parisi, Fully developed turbulence and intermittency in turbulence, and predictability in geophysical fluid dynamics and climate dynamics, inInternational School of Physics ?Enrico Fermi,? Course 88, M. Ghil, ed. (North-Holland, Amsterdam, 1985, p. 84.
[10] T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman, Fractal measures and their singularities: The characterisation of strange sets,Phys. Rev. A 33:1141 (1986). · Zbl 1184.37028
[11] H. G. E. Hentschel and I. Procaccia, The infinite number of generalized dimensions of fractals and strange attractors,Physica 8D:435 (1983). · Zbl 0538.58026
[12] N. Makarov, Preprint.
[13] B. B. Mandelbrot, Multifractal measures, especially for the geophysicist,Ann. Rev. Materials Sci. 19:514-516 (1989).
[14] B. B. Mandelbrot, A class of multifractal measures with negative (latent) value for the dimensionf(alpha), inFractals: Physical Origin and Properties, Luciano Pietronero, ed. (Plenum, New York, 1989).
[15] B. B. Mandelbrot, Two meanings of multifractality, and the notion of negative fractal dimension, inSoviet-American Chaos Meeting, Kenneth Ford and David Campbell, eds. (American Institute of Physics, 1990).
[16] B. B. Mandelbrot, Limit lognormal multifractal measures, inFrontiers of Physics: Landau Memorial Conference, Errol Gotsman, ed. (Pergamon, New York, 1989), pp. 91-122.
[17] B. B. Mandelbrot, New ?anomalous? multiplicative multifractals: Left sidedf(alpha) and the modeling of DLA, in Condensed Matter Physics, in Honour of Cyrill Domb (Bar Ilan, 1990),Physica A (1990).
[18] B. B. Mandelbrot, C. J. G. Evertsz, and Y. Hayakawa, Exactly self-similar ?left-sided? multifractal measures,Phys. Rev. A, submitted.
[19] G. Michon, Une construction des mesures de Gibbs sur certain ensembles de Cantor,C. R. Acad. Sci. Paris 308:315-318 (1989). · Zbl 0687.58017
[20] D. Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups,Acta Math. 153:259-277 (1984). · Zbl 0566.58022
[21] C. Tricot, Jr., Sur la classification des ensembles Bor?liens de mesure de Lebesgue nulle, Th?se, Facult? des Sciences de l’Universit? de Gen?ve (1980).
[22] C. Tricot, Jr., Two definitions of fractional dimension,Math. Proc. Camb. Phil. Soc. 91:57-74 (1982). · Zbl 0483.28010
[23] C. Tricot and S. J. Taylor, Packing measure and its evaluation for a Brownian path,Trans. Am. Math. Soc. 288(2):679-699 (1985). · Zbl 0537.28003
[24] B. Volkman, Ober Hausdorffsche dimension von Mengen, die durch Zifferneigenschaften charakterisiert II, III & IV,Math. Z. 59:247-254, 259-270, 425-433 (1953-1954). · Zbl 0051.29701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.