Aldaz, J. M. Remarks on the Hardy-Littlewood maximal function. (English) Zbl 0892.42010 Proc. R. Soc. Edinb., Sect. A, Math. 128, No. 1, 1-9 (1998). Let \(Mf(x)\equiv \sup_{h>0} {1\over 2h} \int^{x+h}_{x-h}| f(y)| dy\) be the centred Hardy-Littlewood maximal function on \(\mathbb{R}\). Let \(C\) be the constant such that for every \(f\in L^1(\mathbb{R})\) and every \(\lambda>0\), \(\lambda| \{x\in\mathbb{R}: Mf(x)>\lambda\}| \leq C\| f\| _{L^1(\mathbb{R})}\). The author showed that the \(C\in [37/24, (9+\sqrt{41})/8]\). Reviewer: Yang Dachun (Beijing) Cited in 1 ReviewCited in 9 Documents MSC: 42B25 Maximal functions, Littlewood-Paley theory 47J20 Variational and other types of inequalities involving nonlinear operators (general) Keywords:centred Hardy-Littlewood maximal function; weak type (1,1); best constant PDFBibTeX XMLCite \textit{J. M. Aldaz}, Proc. R. Soc. Edinb., Sect. A, Math. 128, No. 1, 1--9 (1998; Zbl 0892.42010) Full Text: DOI References: [1] DOI: 10.1112/blms/22.4.367 · Zbl 0726.42013 · doi:10.1112/blms/22.4.367 [2] DOI: 10.1007/BF02384314 · Zbl 0537.42018 · doi:10.1007/BF02384314 [3] DOI: 10.1007/BF02848939 · Zbl 0770.42013 · doi:10.1007/BF02848939 [4] Bernal, Proc. Roy. Soc. Edinburgh Sect. A 111 pp 325– (1989) · Zbl 0673.42012 · doi:10.1017/S030821050001859X [5] Garsia, Topics in almost everywhere convergence (1970) · Zbl 0198.38401 [6] DOI: 10.1112/blms/16.6.595 · Zbl 0555.42007 · doi:10.1112/blms/16.6.595 [7] DOI: 10.1112/blms/21.1.1 · Zbl 0695.30001 · doi:10.1112/blms/21.1.1 [8] Guzman, Real Variable Methods in Fourier Analysis 75 (1981) · Zbl 0449.42001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.