×

zbMATH — the first resource for mathematics

Comparing Heegaard splittings – the bounded case. (English) Zbl 0892.57009
The authors generalize their results in [Topology 35, No. 4, 1005-1026 (1996; Zbl 0858.57020)] to 3-manifolds with boundary.

MSC:
57N10 Topology of general \(3\)-manifolds (MSC2010)
57M50 General geometric structures on low-dimensional manifolds
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. J. Casson and C. McA. Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987), no. 3, 275 – 283. · Zbl 0632.57010 · doi:10.1016/0166-8641(87)90092-7 · doi.org
[2] Jean Cerf, Sur les difféomorphismes de la sphère de dimension trois (\Gamma \(_{4}\)=0), Lecture Notes in Mathematics, No. 53, Springer-Verlag, Berlin-New York, 1968 (French). · Zbl 0164.24502
[3] Charles Frohman, Minimal surfaces and Heegaard splittings of the three-torus, Pacific J. Math. 124 (1986), no. 1, 119 – 130. · Zbl 0604.57006
[4] Wolfgang Haken, Some results on surfaces in 3-manifolds, Studies in Modern Topology, Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.), 1968, pp. 39 – 98.
[5] K. Johannson, Topology and Combinatorics of 3-Manifolds, Lecture Notes in Math, 1599 Springer-Verlag, Berlin and New York, 1995. CMP 97:09 · Zbl 0820.57001
[6] H. Rubinstein and M. Scharlemann, Comparing Heegaard splittings of non-Haken 3-manifolds, Topology 35 (1996), 1005-1026. CMP 96:17 · Zbl 0858.57020
[7] H. Rubinstein and M. Scharlemann, Transverse Heegaard splittings, Michigan Math. J. 49 (1997), 69-83. CMP 97:10 · Zbl 0907.57013
[8] J. Schultens, The stabilization problem for Heegaard splittings of Seifert fibered spaces, Topology and its Applications 73(1996), 133-139. CMP 97:03 · Zbl 0867.57013
[10] Martin Scharlemann and Abigail Thompson, Thin position for 3-manifolds, Geometric topology (Haifa, 1992) Contemp. Math., vol. 164, Amer. Math. Soc., Providence, RI, 1994, pp. 231 – 238. · Zbl 0818.57013 · doi:10.1090/conm/164/01596 · doi.org
[11] Friedhelm Waldhausen, Heegaard-Zerlegungen der 3-Sphäre, Topology 7 (1968), 195 – 203 (German). · Zbl 0157.54501 · doi:10.1016/0040-9383(68)90027-X · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.