Burnecki, M. Equality of coarse topologies in inverse transformations. (English) Zbl 0893.46020 Acta Univ. Carol., Math. Phys. 37, No. 2, 3-5 (1996). Summary: In [Indiana Univ. Math. J. 28, 453-469 (1979; Zbl 0401.28017)], J. R. Choksi and S. Kakutani proved that all the strong operator (of course) topologies induced from \({\mathcal L}(L^p(m))\), \(1\leq p<\infty\), coincide on the group of invertible transformations. We show that it holds in a more general setting of Orlicz spaces. MSC: 46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) 46B28 Spaces of operators; tensor products; approximation properties 28D05 Measure-preserving transformations Keywords:strong operator topologies; group of invertible transformations; Orlicz spaces Citations:Zbl 0401.28017 PDF BibTeX XML Cite \textit{M. Burnecki}, Acta Univ. Carol., Math. Phys. 37, No. 2, 3--5 (1996; Zbl 0893.46020) Full Text: EuDML OpenURL