×

Upper and lower limits of sequences of observables in D-posets of fuzzy sets. (English) Zbl 0894.28011

The D-posets of fuzzy sets is studied. Using upper and lower limits of sequences of fuzzy sets, it is defined the convergence of a sequence of observables (i.e., \(\sigma \)-homomorphisms from Borel sets into a D-poset of fuzzy sets). This enables to apply the Kolmogorov consistency theorem for obtaining convergence theorems.

MSC:

28E10 Fuzzy measure theory
03E72 Theory of fuzzy sets, etc.
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
PDFBibTeX XMLCite
Full Text: EuDML

References:

[1] BUTNARIU D.-KLEMENT E. P.: Triangular norm-based measures and their Markov kernel representation. J. Math. Anal. Appl. 169 (1991), 111-143. · Zbl 0751.60003 · doi:10.1016/0022-247X(91)90181-X
[2] DVUREČENSKIJ A.-PULMANNOVA S.: Difference posets, effects and quantum measurements. Internat. J. Theoret. Phys. 33 (1994), 819-850. · Zbl 0806.03040 · doi:10.1007/BF00672820
[3] CHOVANEC F.-KOPKA F.: On a representation of observables in D-posets of fuzzy sets. Tatra Mt. Math. Publ. 1 (1992), 19-24. · Zbl 0795.03096
[4] JUREČKOVÁ M.-RIEČAN B.: On the strong law of large numbers in D-posets. Internat J. Theoret. Phys. 34 (1995), 1495-1500. · Zbl 0843.03041 · doi:10.1007/BF00676259
[5] KOPKA F.-CHOVANEC F.: D-posets. Math. Slovaca 44 (1994), 21-34. · Zbl 0789.03048
[6] MESIAR R.: Fuzzy observables. J. Math. Anal. Appl. 174 (1993), 178-193. · Zbl 0777.60005 · doi:10.1006/jmaa.1993.1109
[7] MESIAR R.-RIEČAN B.: On the joint observables in some quantum structures. Tatra Mt. Math Publ. 3 (1993), 183-190. · Zbl 0806.28015
[8] NAVARA M.-PTÁK P.: Difference posets and orthoalgebras.
[9] PYKACZ J.: Quantum logics as families of fuzzy subsets of the set of physical states. Proc. 2nd Int. Fuzzy Systems Assoc. Congress, Tokyo, Vol. 2, Tokyo, 1987, pp. 437-440.
[10] RIEČAN B.: Fuzzy connectives and quantum models. Cybernetics and Systems Research ’92. Vol. 1 (R. Trappl, 1992, pp. 335-338.
[11] RIEČAN B.: On the almost everywhere convergence of observables in some algebraic structures. Atti Sem. Mat. Fis. Univ. Modena 44 (1996), 95-104. · Zbl 0860.60095
[12] RIEČANOVÁ Z.-BRŠEL D.: Contraexamples in difference posets and, orthoalgebras. Internat. J. Theoret. Phys. 23 (1994), 133-141. · Zbl 0795.03092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.