Shibata, T. Spectral asymptotics of nonlinear multiparameter Sturm-Liouville problems. (English) Zbl 0894.34016 Differ. Integral Equ. 10, No. 4, 625-648 (1997). The vector problem under consideration reads: \[ u''+\sum _{k=1}^n u_kf_k(u)=\lambda g(u),\;u(x)>0\;\text{ for } x\in (0,1),\;u(0)=u(1)=0, \] where \(u_k\), \(k=1,\dots ,n,\) and \(\lambda \) are positive parameters. Spectral asymptotics are established for the variational eigenvalues in the frame of the Ljusternik-Schnirelman theory on general level sets elaborated by E. Zeidler [Math. Nachr. 129, 235-259 (1986; Zbl 0608.58014)]. Reviewer: J.Andres (Olomouc) MSC: 34B24 Sturm-Liouville theory 34B15 Nonlinear boundary value problems for ordinary differential equations 34L20 Asymptotic distribution of eigenvalues, asymptotic theory of eigenfunctions for ordinary differential operators Keywords:multiparameter Sturm-Liouville problems; asymptotic formulas Citations:Zbl 0608.58014 PDF BibTeX XML Cite \textit{T. Shibata}, Differ. Integral Equ. 10, No. 4, 625--648 (1997; Zbl 0894.34016)