zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Two-parameter bifurcation in a predator-prey system of Ivlev type. (English) Zbl 0894.34025
This paper considers a predator-prey system of the form $$\dot x= rx(1- x)-(1- e^{-ax})y,\quad \dot y= y[(1- e^{-ax})- D],$$ where $D< 1-e^{-a}$, give a necessary and sufficient condition for the uniqueness of the limit cycle, which is $$a>-{2D+ (1-D)\log(1- D)\over D+(1- D)\log(1- D)} \log(1- D).$${}.

34C05Location of integral curves, singular points, limit cycles (ODE)
92D25Population dynamics (general)
Full Text: DOI
[1] Gasull, A.; Guillamon, A.: Non-existence of limit cycles for some predator--prey systems. (1993) · Zbl 0938.34515
[2] Ivlev, V. S.: Experimental ecology of the feeding of fishes. (1961)
[3] Kooij, R. E.; Zegeling, A.: A predator--prey model with ivlev’s functional response. J. math. Anal. appl. 198, 473-489 (1996) · Zbl 0851.34030
[4] Kuang, Y.; Freedman, H. I.: Uniqueness of limit cycles in gause-type models of predator--prey systems. Math. biosci. 88, 67-84 (1988) · Zbl 0642.92016
[5] May, R. M.: Stability and complexity in model ecosystems. (1974)
[6] Rosenzweig, M. L.: Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385-387 (1971)
[7] Sugie, J.; Hara, T.: Non-existence of periodic solutions of the Liénard system. J. math. Anal. appl. 159, 224-236 (1991) · Zbl 0731.34042
[8] Sugie, J.; Kohno, R.; Miyazaki, R.: On a predator--prey system of Holling type. Proc. amer. Math. soc. 125, 2041-2050 (1997) · Zbl 0868.34023