On a model of Borgnakke-Larsen type leading to nonlinear energy laws at temperatures for polyatomic perfect gases. (Sur un modèle de type Borgnakke-Larsen conduisant à des lois d’énergie non linéaires en température pour les gaz parfaits polyatomiques.) (French) Zbl 0894.35086

Summary: We generalize the class of models of interval energy for the Boltzmann equation (of Borgnakke-Larsen type). This allows us to obtain at the level of the macroscopic limit a wide class of laws of internal energy.


35Q35 PDEs in connection with fluid mechanics
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
Full Text: DOI Numdam EuDML


[1] Bourgat, J.-F.), Desvillettes, L.), Le Tallec, P.) et Perthame, B.) .- Microreversible Collisions for Polyatomic Gases and Boltzmann’s Theorem, Eur. J. Mech., B/Fluids, 13, n° 2 (1994), pp. 237-254. · Zbl 0807.76067
[2] Borgnakke, C.) et Larsen, P.S.).- Statistical collision model for Monte Carlo simulation of polyatomic gas mixtures, J. Comp. Phys.18 (1975), pp. 405-420.
[3] Cercignani, C.).- The Boltzmann equation and its applications, Springer Verlag, Berlin (1988). · Zbl 0646.76001
[4] Chapman, S.) et Cowling, T.G.).- The mathematical theory of non-uniform gases, Cambridge Univ. Press, London (1952). · Zbl 0049.26102
[5] Truesdell, C.) et Muncaster, R.).- Fundamentals of Maxwell kinetic theory of a simple monoatomic gas, Acad. Press, New-York (1980).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.