×

zbMATH — the first resource for mathematics

On the Cauchy problem for the Zakharov system. (English) Zbl 0894.35108
The authors study the local Cauchy problem in time for the Zakharov system in arbitrary space dimension \(D\). It is used a contraction or fixed point method, which is a simpler version than that used by Bourgain. A basic tool is the extension to the Zakharov system the notion of criticality which applies to dilation covariant equations as the nonlinear Schrödinger equation. In the Zakharov system, the two equations have dilation invariance but the two relevant dilation transformations are incompatible.
The results cover the whole subcritical range for \(d\geq 4\), while for \(d\leq 3\), they cover only part of it.
Reviewer: L.Vazquez (Madrid)

MSC:
35Q55 NLS equations (nonlinear Schrödinger equations)
82D10 Statistical mechanical studies of plasmas
76W05 Magnetohydrodynamics and electrohydrodynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Added, H.; Added, S., Existence globale de solutions fortes pour LES équations de la turbulence de Langmuir en dimension 2, C. R. acad. sci. Paris, 299, 551-554, (1984) · Zbl 0575.35080
[2] Added, H.; Added, S., Equations of Langmuir turbulence and nonlinear Schrödinger equation: smoothness and approximation, J. funct. anal., 79, 183-210, (1988) · Zbl 0655.76044
[3] Bekiranov, D.; Ogawa, T.; Ponce, G., On the well-posedness of Benney’s interaction equation of short and long waves, Adv. diff. eq., 1, 919-937, (1996) · Zbl 0861.35104
[4] D. Bekiranov, T. Ogawa, G. Ponce, Weak solvability and well-posedness of a coupled Schrödinger-Kortweg-de Vries equation for capillarity-gravity wave interactions, Proc. Am. Math. Soc. · Zbl 0884.35138
[5] Benney, D.J., Significant interactions between small and large scale surface waves, Stud. appl. math., 55, 93-106, (1976) · Zbl 0352.76017
[6] Benney, D.J., A general theory for interactions between short and long waves, Stud. appl. math., 56, 81-94, (1977) · Zbl 0358.76011
[7] Berestycki, H.; Lions, P.L., Nonlinear field equations, Arch. rat. mech. anal., 82, 313-376, (1983)
[8] B. Birnir, C. Kenig, G. Ponce, N. Svanstedt, L. Vega, 1996, On the ill-posedness of the IVP for the generalized Korteweg-de Vries and nonlinear Schrödinger equations · Zbl 0855.35112
[9] Bourgain, J., Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. Schrödinger equations, Gafa, 3, 107-156, (1993) · Zbl 0787.35097
[10] Bourgain, J., Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations II. the KdV equation, Gafa, 3, 209-262, (1993) · Zbl 0787.35098
[11] Bourgain, J., On the Cauchy and invariant measure problem for the periodic Zakharov system, Duke math. J., 76, 175-202, (1994) · Zbl 0821.35120
[12] Bourgain, J.; Colliander, J., On well-posedness of the Zakharov system, Int. math. res. not., 11, 515-546, (1996) · Zbl 0909.35125
[13] Ginibre, J., Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d’espace (d’après Bourgain), Séminaire bourbaki 796, Astérique, 237, 163-187, (1996) · Zbl 0870.35096
[14] Ginibre, J.; Velo, G., Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. math. pur. appl., 64, 363-401, (1985) · Zbl 0535.35069
[15] Ginibre, J.; Velo, G., Generalized Strichartz inequalities for the wave equation, J. funct. anal., 133, 50-68, (1995) · Zbl 0849.35064
[16] Glangetas, L.; Merle, F., Existence of self-similar blow up solutions for Zakharov equation in dimension 2, Commun. math. phys., 160, (1994) · Zbl 0808.35137
[17] Kenig, C.; Ponce, G.; Vega, L., The initial value problem for a class of nonlinear dispersive equations, Lect. notes math., 1450, 141-156, (1990)
[18] Kenig, C.; Ponce, G.; Vega, L., On the Zakharov and zakharov – schulman systems, J. funct. anal., 127, 204-234, (1995) · Zbl 0823.35158
[19] Kenig, C.; Ponce, G.; Vega, L., A bilinear estimate with applications to the KdV equation, J. amer. soc., 9, 573-603, (1996) · Zbl 0848.35114
[20] C. Kenig, G. Ponce, L. Vega, Quadratic forms for the 1−D, Trans. Amer. Math. Soc. · Zbl 0862.35111
[21] Klainerman, S.; Machedon, M., Space time estimates for null forms and the local existence theorem, Comm. pure appl. math., 46, 1221-1268, (1993) · Zbl 0803.35095
[22] Klainerman, S.; Machedon, M., Smoothing estimates for null forms and applications, Duke math. J., 81, 96-103, (1995) · Zbl 0909.35094
[23] Ozawa, T.; Tsutsumi, Y., Existence and smoothing effect of solutions for the Zakharov equations, RIMS Kyoto univ., 28, 329-361, (1992) · Zbl 0842.35116
[24] Ozawa, T.; Tsutsumi, Y., The nonlinear Schrödinger limit and the initial layer of the Zakharov equations, Proc. jap. acad. A, 67, 113-116, (1991) · Zbl 0754.35113
[25] Ozawa, T.; Tsutsumi, Y., The nonlinear Schrödinger limit and the initial layer of the Zakharov equations, Diff. int. eq., 5, 721-745, (1992) · Zbl 0754.35163
[26] Schochet, S.; Weinstein, M., The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence, Commun. math. phys., 106, 569-580, (1986) · Zbl 0639.76054
[27] Strauss, W., Existence of solitary waves in higher dimensions, Commun. math. phys., 55, 149-162, (1977) · Zbl 0356.35028
[28] Sulem, C.; Sulem, P.L., Quelques résultats de régularité pour LES équations de la turbulence de Langmuir, C. R. acad. sci. Paris, 289, 173-176, (1979) · Zbl 0431.35077
[29] Tsutsumi, M.; Hatano, S., Well-posedness of the Cauchy problem for the long wave-short wave resonance equations, Nonlin. anal. TMA, 22, 155-171, (1994) · Zbl 0818.35116
[30] Tsutsumi, M.; Hatano, S., Well-posedness of the Cauchy problem for Benney’s first equations of long wave-short wave interactions, Funk. ekv., 37, 289-316, (1994) · Zbl 0841.35107
[31] Tsutsumi, Y., L2, Funk. ekv., 30, 115-125, (1987)
[32] Zakharov, V.E., Collapse of Langmuir waves, Sov. phys. JETP, 35, 908-914, (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.