×

zbMATH — the first resource for mathematics

Galerkin-least-squares finite element methods for the three-field Stokes system in \(\mathbb R^3\). (English) Zbl 0894.76040
Summary: Two new finite element methods for solving the three-field Stokes system associated with viscoelastic flow problems in three-dimensional space are introduced. Both methods are based on a Galerkin-least-squares formulation, and complete first- and second-order convergence proofs of the corresponding approximations are given.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76A10 Viscoelastic fluids
76D07 Stokes and related (Oseen, etc.) flows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Acquadro Quacchia, G., Resolução computacional de um problema de viscoelasticidade plana incompressivel via elementes finitos mistos, ()
[2] Adams, R.A., Sobolev spaces, (1970), Academic Press New York · Zbl 0186.19101
[3] Astarita, G.; Marrucci, G., Principles of non-Newtonian fluid mechanics, (1974), McGraw-Hill New York · Zbl 0316.73001
[4] Baaijens, F.P.T., Numerical analysis of unsteady viscoelastic flow, Comput. methods appl. mech. engrg., 94, 2, 285-299, (1992) · Zbl 0748.76016
[5] Babuška, I., Error bound for the finite element method, Numer. math., 16, 322-333, (1971) · Zbl 0214.42001
[6] Babuška, I., The finite element method with Lagrange multipliers, Numer. math., 20, 179-192, (1973) · Zbl 0258.65108
[7] Baiocchi, C.; Brezzi, F.; Franca, L., Virtual bubbles and Galerkin-least-squares type methods, Comput. methods appl. mech. engrg., 105, 125-141, (1993) · Zbl 0772.76033
[8] Baranger, J.; Sandri, D., Approximation par éléments finis d’écoulements de fluides viscoélastiques. existence de solutions approchées et majorations d’erreur, C.R. acad. sci. Paris, 541-544, (1991), t. 312 Série I · Zbl 0718.76010
[9] Basombrio, F.G.; Buscaglia, G.C.; Dari, E.A., Simulation of highly elastic fluid flows without additional numerical diffusivity, J. non-newt. fluid mech., 39, 189-206, (1991)
[10] Bird, R.B.; Armstrong, R.C.; Hassager, O., Fluid mechanics, ()
[11] Brézis, H., Analyse fonctionnelle, () · Zbl 0511.46001
[12] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, RAIRO, Série rouge, analyse numérique R-2, 129-151, (1974) · Zbl 0338.90047
[13] Buscaglia, G.C.; Felicelli, S.D., A finite element scheme for viscoelastic fluids, () · Zbl 0875.76202
[14] Crochet, M.J.; Davies, A.R.; Walters, K., Numerical simulation of non-Newtonian flow, (1984), Elsevier Amsterdam · Zbl 0583.76002
[15] Dupire, B., Problemas variacionais lineares, sua aproximação e formula\( \̃\)coes mistas, ()
[16] Duvaut, G., Mécanique des milieux continus, (1990), Masson Paris · Zbl 0281.73005
[17] Duvaut, G.; Lions, J.-L., LES inéquations en Mécanique et en physique, (1972), Masson Paris · Zbl 0298.73001
[18] Falk, R.S., Nonconforming finite element methods for the equations of linear elasticity, Math. comput., 57, 529-550.23, (1991) · Zbl 0747.73044
[19] Fortin, A.; Fortin, M., A preconditioned generalized minimal residual algorithm for the numerical solution of viscoelastic flows, J. non-newt. fluid mech., 36, 277-288, (1990) · Zbl 0708.76012
[20] Fortin, M.; Leborgne, G., Related least-square methods for numerical simulation of viscoelastic fluids, ()
[21] Franca, L.; Hughes, T.J.R.; Loula, A.F.D.; Miranda, I., A new family of stable elements for nearly incompressible elasticity based on a mixed Petrov-Galerkin finite element formulation, Numer. math., 53, 123-141, (1988) · Zbl 0656.73036
[22] Franca, L.; Stenberg, R., Error analysis of some Galerkin-least-squares methods for the elasticity equations, SIAM J. numer. anal., 28, 6, 1680-1697, (1991) · Zbl 0759.73055
[23] Germain, P., Cours de Mécanique des milieux continus, (1973), Masson & Cie Paris · Zbl 0254.73001
[24] Girault, V.; Raviart, P.A., Finite element methods for Navier-Stokes equations, () · Zbl 0396.65070
[25] Ladyzhenskaya, O., The mathematical theory of viscous incompressible flow, (1963), Gordon & Breach Reading, Berkshire · Zbl 0121.42701
[26] Leborgne, G., Simulation numérique d’écoulements de fluides viscoélastiques de type Oldroyd: utilisation d’éléments finis de degré 1, ()
[27] Lions, J.-L.; Magenès, E., Problèmes aux limites non-homogènes et applications, (1968), Dunod Paris · Zbl 0165.10801
[28] Marchal, J.M.; Crochet, M.J., A new mixed finite element for calculating viscoelastic flow, J. non-newt. fluid mech., 26, 77-114, (1987) · Zbl 0637.76009
[29] Ramos, M.A.Monteiro Silva, Um modelo numérico para a simulação do escoamento de fluidos viscoelásticos via elementes finitos, ()
[30] Raviart, P.A.; Thomas, J.M., Introduction à l’analyse numérique des équations aux Dérivées partielles, (1983), Masson Paris · Zbl 0561.65069
[31] V. Ruas, Circumventing discrete Korn’s inequality in the convergence analysis of nonconforming finite element approximations of vector fields, ZAMM, 76(8) 483-484. · Zbl 0889.73070
[32] Ruas, V., A quasilinear finite element method for solving transient problems with a consistent diagonal mass matrix, Matemática aplicada e computacional, 3, 2, 113-130, (1984) · Zbl 0562.65076
[33] Ruas, V., Semestrial reports on the research project sponsored by Brazilian state owned agency FINEP,, (1984), Pontifícia Universidade Católica do Rio de Janeiro, entitled Desenvolvimento de Métodos e de Software de Elementos Finitos para a Resolução de Problemas de Mecânica dos Fluidos e de Estruturas
[34] Ruas, V., Une méthode mixte contrainte-déplacement-pression pour la résolution de problémes de viscoélasticité incompressible en déformations planes, C.R. acad. sci., Paris, 16, 1171-1174, (1985), t. 301, Série II · Zbl 0578.73041
[35] Ruas, V., Finite element solution of 3D viscous flow problems using nonstandard degrees of freedom, Jap. J. appl. math., 2, 2, 415-431, (1985) · Zbl 0611.76038
[36] Ruas, V.; de Araujo, J.H.Carneiro, Un método de elementos finitos quadrilatelares mejorado para el sistema de Stokes asociado al flujo de fluidos viscoelásticos, Revista internacional sobre Métodos numéricos para Cálculo y diseño en ingeniería, 8, 1, 77-85, (1992)
[37] Ruas, V., An optimal three-field finite element approximation of the Stokes system with continuous extra stresses, Jap. J. ind. appl. math., 11, 1, 113-130, (1994) · Zbl 0797.76045
[38] Ruas, V., Finite element methods for the three-field Stokes system in three-dimension space, Modélisation mathématique et analyse numérique,, 30, 4, 489-525, (1996), submitted to · Zbl 0853.76041
[39] Sandri, D., Analyse d’une formulation à trois champs du problème de Stokes, Modélisation mathématique et analyse numérique, 27, 7, 817-841, (1993) · Zbl 0791.76008
[40] Schwartz, L., Théorie des distributions, ()
[41] Shiojima, T.; Shimazaki, Y., Three-dimensional finite element analyses for a Maxwell fluid using penalty function method, ()
[42] Tanner, R.I., Engineering rheology, (1985), Claredon Press Oxford · Zbl 1171.76300
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.