×

Graded Lie algebras of maximal class. (English) Zbl 0895.17031

An algebra of maximal class is a graded Lie algebra \(L= \bigoplus_{i=1}^\infty L_i\) over a field \(F\), where \(\dim(L_1)= 2\), \(\dim (L_1)\leq 1\) for \(i\geq 2\), and \([L_i, L_j]=: L_{i+1}\) for all \(i\geq 1\). For \(F\) of characteristic \(p>0\) the authors construct \(| F|^{\aleph_0}\) pairwise nonisomorphic nonsolvable algebras of maximal class and \(\max\{| F|, \aleph_0\}\) solvable ones. Both numbers are shown to be best possible. The construction given in this paper yields an extension of a tensor product of a maximal ideal of \(L\) and an extension of \(F\). The isomorphism type of \(L\) is determined by its sequence of two-step centralizers.

MSC:

17B70 Graded Lie (super)algebras
17B50 Modular Lie (super)algebras
17B30 Solvable, nilpotent (super)algebras

Software:

ANUPQ; GAP
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] A. A. Albert and M. S. Frank, Simple Lie algebras of characteristic p, Rend. Sem. Mat. Univ. Politec. Torino 14 (1954/5), 117-139.
[2] N. Blackburn, On a special class of \?-groups, Acta Math. 100 (1958), 45 – 92. · Zbl 0083.24802
[3] Richard E. Block, Determination of the differentiably simple rings with a minimal ideal., Ann. of Math. (2) 90 (1969), 433 – 459. · Zbl 0216.07303
[4] A. Caranti, S. Mattarei, M. F. Newman and C. M. Scoppola, Thin groups of prime-power order and thin Lie algebras, Quart. J. Math. Oxford Ser. (2) 47 (1996), 279-296. CMP 97:02 · Zbl 0865.20016
[5] F. Celler, M. F. Newman, W. Nickel and A. C. Niemeyer, An algorithm for computing quotients of prime-power order for finitely presented groups and its implementation in GAP, Research Report 127, Australian National University, Canberra, 1993.
[6] George Havas, M.F. Newman and E.A. O’Brien, ANU p-Quotient Program (Version 1.2), written in C, available from maths.anu.edu.au by anonymous ftp in the directory pub/PQ, as a share library with GAP 3.4 and as part of Magma, 1995.
[7] B. Huppert, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). · Zbl 0217.07201
[8] Nathan Jacobson, Lie algebras, Dover Publications, Inc., New York, 1979. Republication of the 1962 original. · Zbl 0121.27504
[9] Édouard Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. France 6 (1878), 49-54. · JFM 10.0139.04
[10] Avinoam Mann, Space groups and groups of prime power order. VII. Powerful \?-groups and uncovered \?-groups, Bull. London Math. Soc. 24 (1992), no. 3, 271 – 276. · Zbl 0794.20028
[11] Susan McKay, On the structure of a special class of \?-groups. II, Quart. J. Math. Oxford Ser. (2) 41 (1990), no. 164, 431 – 448. · Zbl 0722.20009
[12] Martin Schönert et al., GAP - Groups, Algorithms, and Programming, Release 3.4, Lehrstuhl D für Mathematik, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany, 1995.
[13] C. R. Leedham-Green, The structure of finite \?-groups, J. London Math. Soc. (2) 50 (1994), no. 1, 49 – 67. , https://doi.org/10.1112/jlms/50.1.49 Aner Shalev, The structure of finite \?-groups: effective proof of the coclass conjectures, Invent. Math. 115 (1994), no. 2, 315 – 345. · Zbl 0795.20009
[14] Aner Shalev, Simple Lie algebras and Lie algebras of maximal class, Arch. Math. (Basel) 63 (1994), no. 4, 297 – 301. · Zbl 0803.17006
[15] B. Hartley, G. M. Seitz, A. V. Borovik, and R. M. Bryant , Finite and locally finite groups, NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, vol. 471, Kluwer Academic Publishers Group, Dordrecht, 1995. · Zbl 0827.00038
[16] Aner Shalev and E. I. Zelmanov, Narrow Lie algebras I: a coclass theory and a characterization of the Witt algebra, J. Algebra 189 (1997), 294-330. · Zbl 0886.17008
[17] Hans Zassenhaus, Über Liesche Ringe mit Primzahlcharakteristik, Abh. Math. Sem. Univ. Hamburg 13 (1939), 1-100. · JFM 65.0090.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.