Dufresnoy, Alain On Bennequin’s problem: a counterexample (after Alexander). (Sur le problème de Bennequin: un contre-exemple (d’après Alexander).) (French) Zbl 0895.53042 Séminaire de théorie spectrale et géométrie. Année 1996-1997. St. Martin D’Hères: Univ. de Grenoble I, Institut Fourier, Sémin. Théor. Spectrale Géom., Chambéry-Grenoble. 15, 13-15 (1997). An analytic disk in \(\mathbb C^n\) is a map \(f:\overline D\to\mathbb C^n\) where \(\overline D\) is the closed unit disk, holomorphic on the open disk \(D\) and smooth up to boundary. The aim of this paper is to present a counterexample obtained by H. Alexander to a problem of D. Bennequin asserting that a non-constant analytic disk exists in \(\mathbb C^2\) with boundary in a totally real 2-torus. There is also presented a true weak version of Bennequin’s problem obtained by H. Alexander [Invent. Math. 125, 135-148 (1996; Zbl 0853.32003)].For the entire collection see [Zbl 0882.00016]. Reviewer: M.Crasmareanu (Iaşi) MSC: 53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces 32A10 Holomorphic functions of several complex variables Keywords:analytic disk; totally real torus; Gromov’s method Citations:Zbl 0853.32003 PDF BibTeX XML Cite \textit{A. Dufresnoy}, in: Séminaire de théorie spectrale et géométrie. Année 1996-1997. St. Martin D'Hères: Univ. de Grenoble I, Institut Fourier. 13--15 (1997; Zbl 0895.53042) Full Text: EuDML OpenURL