Geometric aspects of Fleming-Viot and Dawson-Watanabe processes. (English) Zbl 0895.60082

Summary: This paper is concerned with the intrinsic metrics of the two main classes of superprocesses. For the Fleming-Viot process, we identify it as the Bhattacharya distance, and for Dawson-Watanabe processes, we find the Kakutani-Hellinger metric. The corresponding geometries are studied in some detail. In particular, representation formulas for geodesics and arc length functionals are obtained. The relations between the two metrics yield a geometric interpretation of the identification of the Fleming-Viot process as a Dawson-Watanabe superprocess conditioned to have total mass 1. As an application, a functional limit theorem for super-Brownian motion conditioned on local extinction is proved.


60J60 Diffusion processes
60G57 Random measures
58J65 Diffusion processes and stochastic analysis on manifolds
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
Full Text: DOI


[1] AMARI, S. 1985. Differential-geometrical methods in statistics. Lecture Notes in Statist. 28. Springer, Berlin. Z. · Zbl 0559.62001
[2] BALLMANN, W. 1990. Singular spaces of non-positive curvature. In Sur les groupes Hyperboliques d’apres Mikhael Gromov 189 202. Birkhauser, Boston. \' \" · Zbl 0712.53019
[3] CARLEN, E. A., KUSUOKA, S. and STROOK, D. W. 1987. Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincare 2 245 287. Ź. · Zbl 0634.60066
[4] DAVIES, E. B. 1989. Heat Kernels and Spectral Theory. Cambridge Univ. Press. Z. · Zbl 0699.35006
[5] DAWSON, D. A. 1993. Measure-valued Markov processes. Ecole d’Ete de Probabilites de Saint\' \' Flour XXI. Lecture Notes in Math. 1541 1 260. Springer, Berlin. Z. · Zbl 0799.60080
[6] DUNFORD, N. and SCHWARTZ, J. 1967. Linear Operators. Interscience, New York. Z.
[7] ETHERIDGE, A. and MARCH, P. 1991. A note on superprocesses. Probab. Theory Related Fields 89 141 147. Z. · Zbl 0722.60076
[8] ETHIER, S. N and KURTZ, T. G. 1986. Markov Processes Characterization and Convergence. Wiley, New York. Z. · Zbl 0592.60049
[9] HILLE, E. and PHILLIPS, R. 1957. Functional Analysis and Semi-groups. Amer. Math. Soc., Providence, RI. Z.
[10] IKEDA, N. and WATANABE, S. 1989. Stochastic Differential Equations and Diffusion Processes, 2nd ed. North-Holland, Amsterdam. Z. · Zbl 0684.60040
[11] JACOD, J. and SHIRYAEV, A. N. 1987. Limit Theorems for Stochastic Processes. Springer, Berlin. Z. · Zbl 0635.60021
[12] KONNO, N. and SHIGA, T. 1988. Stochastic partial differential equations for some measurevalued diffusions. Probab. Theory Related Fields 79 201 225. Z. · Zbl 0631.60058
[13] KUWAE, K. and UEMURA, T. 1995. Weak convergence of symmetric diffusion processes. Probab. Theory Related Fields. To appear. Z. · Zbl 0916.31006
[14] LYNCH, J. and SETHURAMAN, J. 1987. Large deviations for processes with independent increments. Ann. Probab. 15 610 627. Z. · Zbl 0624.60045
[15] OVERBECK, L. and ROCKNER, M. 1996. Geometric aspects of finite and infinite dimensional \" Fleming Viot processes. In Random Operators and Stochastic Equations. To appear. Z.
[16] PARTHASARATHY, K. R. 1967. Probability Measures on Metric Spaces. Academic Press, New York. Z. · Zbl 0153.19101
[17] PERKINS, E. 1991. Conditional Dawson Watanabe processes and Fleming Viot processes. In Seminar on Stochastic Processes Progr. Probab. 29 143 156. Birkhauser, Basel. \" Z. · Zbl 0763.60026
[18] SCHIED, A. 1996. Sample path large deviations for super-Brownian motion. Probab. Theory Related Fields 104 319 348. Z. · Zbl 0851.60083
[19] SHIGA, T. 1990. A stochastic equation based on a Poisson system for a class of measure-valued diffusion processes. J. Math. Kyoto Univ. 30 245 279. Z. · Zbl 0751.60044
[20] STURM, K.-TH. 1994. Analysis on local Dirichlet spaces I. Recurrence, conservativeness and L p-Liouville properties. J. Reine Angew. Math. 456 173 196. Z. · Zbl 0806.53041
[21] STURM, K.-TH. 1995. On the geometry defined by Dirichlet forms. In Seminar on Stochastic Analysis, Random Fields and Applications Prog. Probab. 36 231 242. Birkauser, \" Basel. · Zbl 0834.58039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.