zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A logic for rough sets. (English) Zbl 0896.03050
Summary: The collection of all subsets of a set forms a Boolean algebra under the usual set-theoretic operations, while the collection of rough sets of an approximation space is a regular double Stone algebra [{\it J. Pomykala} and {\it J. A. Pomykala}, Bull. Pol. Acad. Sci., Math. 36, 495-508 (1988; Zbl 0786.04008)]. The appropriate class of algebras for classical propositional logic are Boolean algebras, and it is reasonable to assume that regular double Stone algebras are a class of algebras appropriate for a logic of rough sets. Using the representation theorem for these algebras by {\it T. Katriňák} [Bull. Soc. R. Sci. Liège 43, 283-290 (1974; 314.06004)], we present such a logic for rough sets and its algebraic semantics in the spirit of {\it H. Andréka} and {\it I. Németi} [in: D. M. Gabbay (ed.), What is a logical system? Stud. Log. Comput. 4, 393-443 (1994; Zbl 0823.03040)].

MSC:
03G10Lattices and related structures (algebraic logic)
03B60Other nonclassical logic
06D15Pseudocomplemented lattices
WorldCat.org
Full Text: DOI
References:
[1] Andréka, H.: Universal algebraic logic. Ph.d. dissertation (1975)
[2] Andréka, H.; Németi, I.: General algebraic logic: a perspective on ’what is logic’. Studies in logic and computation 4, 393-443 (1994) · Zbl 0823.03040
[3] Andréka, H.; Németi, I.; Sain, I.: Abstract model theoretic approach to algebraic logic. CCSOM working paper 92-92 (1992)
[4] H. Andréka and I. Sain, Connections between algebraic logic and initial algebra semantics of CF languages, in: Dömölki and Gergely, eds., [8], 25--83.
[5] Balbes, R.; Dwinger, P.: Distributive lattices. (1974) · Zbl 0321.06012
[6] Comer, S.: An algebraic approach to the approximation of information. Fund. inform. 14, 492-502 (1991) · Zbl 0727.68114
[7] Comer, S.: On connections between information systems, rough sets, and algebraic logic. Banach center publications 28 (1993) · Zbl 0793.03074
[8] Dömölki, B.; Gergely, T.: Proc. coll. Salgótarjàn. Colloq. math. Soc. J. Bolyai 26 (1981)
[9] Düntsch, I.: On free or projective stone algebras. Houston J. Math. 9, 455-463 (1983) · Zbl 0531.06007
[10] Düntsch, I.: Rough relation algebras. Fund. inform. 21, 321-331 (1994) · Zbl 0811.03048
[11] I. Düntsch, Rough sets and algebras, in Orlowska, ed., in preparation.
[12] I. Düntsch and G. Gediga, Entailment of relations, in progress.
[13] Epstein, R. L.: The semantic foundations of logic -- propositional logics. Nijhoff international philosophy series 35 (1990)
[14] Henkin, L.; Monk, J. D.; Tarski, A.: Cylindric algebras. (1985) · Zbl 0576.03043
[15] Huebener, J.: Complementation in the lattice of regular topologies. Pacific J. Math. 41, 139-149 (1972) · Zbl 0216.18902
[16] Katrin\breve{}ák, T.: Construction of regular double p-algebras. Bull. soc. Roy. sci. Liége 43, 294-301 (1974)
[17] Lin, T. Y.: Topological and fuzzy rough sets. Intelligent decision support: handbook of applications and advances of rough set theory, 287-304 (1992)
[18] Németi, I.: Connections between cylindric algebras and initial algebra semantics of CF languages, in: dömölki and gergely. Colloq. math. Soc. J. Bolyai 26, 561-605 (1981)
[19] Orlowska, E.: Modal logics in the theory of information systems. Z. math. Logik grundlag. Math. 30, 213-222 (1984) · Zbl 0556.68053
[20] Orlowska, E.: Logic for reasoning about knowledge. Z. math. Logik grundlag. Math. 35, 559-572 (1989) · Zbl 0711.03008
[21] E. Orlowska, ed., Modeling incomplete information -- fundamentals and application, in preparation.
[22] P. Pagliani, Rough sets theory and logic-algebraic structures, in: Orlowska, ed., in preparation. · Zbl 0819.04010
[23] Pawlak, Z.: Rough sets: theoretical aspects of reasoning about data. (1991) · Zbl 0758.68054
[24] Pomykala, J.; Pomykala, J. A.: The stone algebra of rough sets. Bull. Polish acad. Sci. math. 36, 495-508 (1988)
[25] Sain, I.: There are general rules for specifying semantics: observations on abstract model theory. Comput. linguistics comput. Languages 13, 195-250 (1979) · Zbl 0449.68007
[26] Slowiński, R.: Intelligent decision support: handbook of applications and advances of rough set theory. (1992)
[27] Vakarelov, D.: Notes on N-lattices and constructive logic with strong negation. Studia logica 36, 109-125 (1977) · Zbl 0385.03055
[28] Varlet, J. C.: Algébres des lukasiewicz trivalentes. Bull. soc. Roy. sci. Liége 36, 399-408 (1968) · Zbl 0175.26604
[29] Varlet, J. C.: A regular variety of type \langle2,2,1,1,0,0\rangle. Algebra universalis 2, 218-223 (1972) · Zbl 0256.06004