Song, Seok-Zun Linear operators that preserve maximal column ranks of nonnegative integer matrices. (English) Zbl 0896.15009 Proc. Am. Math. Soc. 126, No. 8, 2205-2211 (1998). Author’s abstract: The maximal column rank of an \(m\times n\) matrix over a semiring is the maximal number of the columns of \(A\) which are linearly independent. We characterize the linear operators which preserve the maximal column ranks of nonnegative integer matrices. Reviewer: N.J.Pullman (Kingston/Ontario) Cited in 1 Document MSC: 15B36 Matrices of integers 15A04 Linear transformations, semilinear transformations 15A03 Vector spaces, linear dependence, rank, lineability Keywords:maximal column rank; linear operator; rank preserving transformation; nonnegative integer matrices PDF BibTeX XML Cite \textit{S.-Z. Song}, Proc. Am. Math. Soc. 126, No. 8, 2205--2211 (1998; Zbl 0896.15009) Full Text: DOI OpenURL