À propos a penalization problem of antisymmetric type. (À propos d’un problème de pénalisation de type antisymétrique.) (French) Zbl 0896.35103

Summary: The author proves that a model of primitive equations of the atmosphere \[ \partial_t v^1+ v\cdot\nabla v^1- \nu\Delta v^1- {1\over\varepsilon} v^2=-{\partial_1\Phi\over \varepsilon},\;\partial_t v^2+ v\cdot\nabla v^2- \nu\Delta v^2+{1\over \varepsilon} v^1=- {\partial_2\Phi\over \varepsilon}, \]
\[ \partial_t v^3+ v\cdot\nabla v^3- \nu\Delta v^3+ {1\over\varepsilon} T=- {\partial_3\Phi\over \varepsilon},\;\partial_t T+ v\cdot\nabla T- \nu'\Delta T-{1\over \varepsilon} v^3= 0, \]
\[ \text{div }v= 0,\quad (v^1, v^2, v^3, T)|_{t= 0}= (v^1_0, v^2_0, v^3_0, T_0) \] is globally well-posed when it is sufficiently close to the quasi-geostrophic model.


35Q30 Navier-Stokes equations
86A05 Hydrology, hydrography, oceanography
Full Text: DOI


[1] Beale, T.; Bourgeois, A., Validity of the quasi-geostrophic model for large scale flow in the atmosphere and Ocean, SIAM journal of mathematical analysis, 25, 1023-1068, (1994) · Zbl 0811.35097
[2] Cannonne, M., Ondelettes, paraproduits et Navier-Stokes, ()
[3] Chemin, J.-Y., Remarques sur l’existence globale pour le système de Navier-Stokes incompressible, SIAM journal of mathematical analysis, 23, 20-28, (1992) · Zbl 0762.35063
[4] Chemin, J.-Y.; Lerner, N., Flot de champs de vecteurs non-lipschitziens et équations de Navier-Stokes, Journal of differential equations, 121, 314-328, (1995) · Zbl 0878.35089
[5] Chemin, J.-Y., Fluides parfaits incompressibles, Astéristique, 230, (1995) · Zbl 0829.76003
[6] Fujita, H.; Kato, T., On the Navier-Stokes initial value problem I, Archiv for rationnal mechanic analysis, 16, 269-315, (1964) · Zbl 0126.42301
[7] Grenier, E., Oscillatory perturbations of the Navier-Stokes equations, () · Zbl 0885.35090
[8] Lions, J.-L., Perturbation singulières dans LES problèmes aux limites et en contrôle optimal, () · Zbl 0268.49001
[9] {\scJ.-L. Lions}, Remarks on some mathematical problems arising in climatology, prépublication.
[10] Lions, J.-L.; Temam, R.; Wang, S., Geostrophic asympotics of the primitive equations of the atmosphere, Topological methods in non linear analysis, 4, 1-35, (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.