Oberle, H. J.; Taubert, K. Existence and multiple solutions of the minimum-fuel orbit transfer problem. (English) Zbl 0896.49021 J. Optimization Theory Appl. 95, No. 2, 243-262 (1997). Summary: The well-known problem of piloting a rocket with a low thrust propulsion system in an inverse square law field (say from Earth orbit to Mars orbit or from Earth orbit to Mars) is considered. By direct methods, it is shown that the existence of a fuel-optimal solution of this problem can be guaranteed, if one restricts the admissible transfer times by an arbitrarily prescribed upper bound. Numerical solutions of the problem with different numbers of thrust subarcs are presented which are obtained by multiple shooting techniques. Further, a general principle for the construction of such solutions with increasing numbers of thrust subarcs is given. The numerical results indicate that there might not exist an overall optimal solution of the Earth-orbit problem with unbounded free transfer time. Cited in 13 Documents MSC: 49N70 Differential games and control 49N75 Pursuit and evasion games 49J15 Existence theories for optimal control problems involving ordinary differential equations 70P05 Variable mass, rockets Keywords:orbit transfer; existence of optimal control; control constraints; minimum principle; numerical method; multiple solutions; multiple shooting techniques Software:BNDSCO × Cite Format Result Cite Review PDF Full Text: DOI References: [1] LAWDEN, D. F., Optimal Trajectories for Space Navigation, Academic Press, New York, New York, 1967. · Zbl 0111.19605 [2] KELLEY, H. J., Gradient Theory of Optimal Flight Paths, ARS Journal, Vol. 30, pp. 947–954, 1960. · Zbl 0096.42002 · doi:10.2514/8.5282 [3] KELLEY, H. J., Method of Gradients, Optimization Techniques, Edited by G. Leitmann, Academic Press, New York, New York, pp. 205–254, 1962. [4] KELLEY, H. J., KOPP, R. E., and MOYER, H. G., A Trajectory Optimization Technique Based upon the Theory of the Second Variation, Progress in Astronautics and Aeronautics: Celestial Mechanics and Astrodynamics, Edited by V. G. Szebehely, Academic Press, New York, New York, Vol. 14, p. 559, 1964. [5] KELLEY, H. J., KOPP, R. E., and MOYER, H. G., Singular Extremals, Optimization Techniques, Edited by G. Leitmann, Academic Press, New York, New York, pp. 63–101, 1967. [6] KENNETH, P., and MCGILL, R., Two-Point Boundary-Value Problem Techniques, Advances in Control Systems, Edited by C. T. Leondes, Academic Press, New York, New York, Vol. 3, pp. 69–109, 1966. [7] KENNETH, P., and TAYLOR, G. E., Solution of Variational Problems with Bounded Control Variables by Means of the Generalized Newton-Raphson Method, Recent Advances in Optimization Techniques, Edited by A. Lavi and T. P. Vogl, John Wiley and Sons, New York, New York, pp. 471–487, 1966. [8] LINDORFER, W., and MOYER, H. G., Application of a Low-Thrust Trajectory Optimization Scheme to Planar Earth-Mars Transfer, ARS Journal, Vol. 32, pp. 260–262, 1962. [9] MAURER, H., Zur numerischen Berechnung optimaler singulärer Steuerungen, Doctoral Thesis, University of Köln, Köln, Germany, 1972. [10] MOYER, G. H., and PINKHAM, G., Several Trajectory Optimization Techniques, Computing Methods in Optimization Problems, Edited by A. V. Balakrishan and L. W. Neustadt, Academic Press, New York, New York, pp. 65–89, 1964. · Zbl 0196.51203 [11] OBERLE, H. J., On the Numerical Computation of Minimum-Fuel, Earth-Mars Transfer, Journal of Optimization Theory and Applications, Vol. 22, pp. 447–453, 1977. · Zbl 0336.49017 · doi:10.1007/BF00932866 [12] FILIPPOV, A. F., On Certain Questions in the Theory of Optimal Control, SIAM Journal on Control, Vol. 1, pp. 76–84, 1962. · Zbl 0139.05102 [13] CESARI, L., Existence Theorems for Weak and Usual Solutions in Lagrange Problems with Unilateral Constraints, Parts 1–2, Transaction of the American Mathematical Society, Vol. 124, pp. 369–430, 1966. · Zbl 0145.12501 · doi:10.1090/S0002-9947-1966-0203542-1 [14] CESARI, L., Existence Theorems for Optimal Control of the Mayer Type, SIAM Journal on Control, Vol. 6, pp. 517–552, 1966. · Zbl 0174.14301 · doi:10.1137/0306033 [15] BRYSON, A. E., and HO, Y. C., Applied Optimal Control, Ginn and Company, Waltham, Massachusetts, 1969. [16] TAUBERT, K., Über die Existenz und Approximation optimaler Paare bei optimalen Steuerungsproblemen, Diploma Thesis, University of Hamburg, Hamburg, Germany, 1970. [17] BITTNER, L., Existenz von optimalen Lösungen für das Problem des Wiedereintritts in die Atmosphäre und des Einschwenkens in eine Umlaufbahn, Workshop on Optimalsteuerungsprobleme von Hyperschall Flugsystemen, Greifswald, Germany, 1994; University of Technology, München, Germany, pp. 1–7, 1995. [18] BULIRSCH, R., Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwertaufgaben und Aufgaben der optimalen Steuerung, Report of the Carl Cranz Gesellschaft, Oberpfaffenhofen, Germany, 1971. [19] STOER, J., and BULIRSCH, R., Introduction to Numerical Analysis, 2nd Edition, Texts in Applied Mathematics, Springer, New York, New York, Vol. 12, 1993. · Zbl 0771.65002 [20] OBERLE, H. J., Numerische Berechnung optimaler Steuerungen von Heizung und Kühlung für ein realistisches Sonnenhausmodell, Habilitationsschrift, University of Technology, München, Germany, 1982. · Zbl 0533.65040 [21] OBERLE, H. J., and GRIMM, W., BNDSCO: A Program for the Numerical Solution of Optimal Control Problems, Report 515, Institute for Flight Systems Dynamics, German Aerospace Research Establishment DLR, Oberpfaffenhofen, Germany, 1989. [22] SAAGER, S., Numerisch Berechnung von Startterminen zu treibstoffoptimalen Flugbahnen einer Ionenrakete von der Erde zum Mars, Diploma Thesis, University of Hamburg, Hamburg, Germany, 1987. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.