zbMATH — the first resource for mathematics

A group of paths in \(\mathbb{R}^2\). (English) Zbl 0896.52024
Summary: We define a group structure on the set of compact “minimal” paths in \(\mathbb{R}^2 \). We classify all finitely generated subgroups of this group \(G\): they are free products of free abelian groups and surface groups. Morover, each such group occurs in \(G\).
The subgroups of \(G\) isomorphic to surface groups arise from certain topological 1-forms on the corresponding surfaces. We construct examples of such 1-forms for cohomology classes corresponding to certain eigenvectors for the action on cohomology of a pseudo-Anosov diffeomorphism.
Using \(G\) we construct a non-polygonal tiling problem in \(\mathbb{R}^2\), that is, a finite set of tiles whose corresponding tilings are not equivalent to those of any set of polygonal tiles.
The group \(G\) has applications to combinatorial tiling problems of the type given a set of tiles \(P\) and a region \(R\), can \(R\) be tiled by translated copies of tiles in \(P\)?

52C20 Tilings in \(2\) dimensions (aspects of discrete geometry)
20E08 Groups acting on trees
20E06 Free products of groups, free products with amalgamation, Higman-Neumann-Neumann extensions, and generalizations
20F34 Fundamental groups and their automorphisms (group-theoretic aspects)
05B45 Combinatorial aspects of tessellation and tiling problems
Full Text: DOI
[1] Pierre Arnoux and Albert Fathi, Un exemple de difféomorphisme pseudo-Anosov, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 2, 241 – 244 (French, with English summary). · Zbl 0722.57015
[2] Pierre Arnoux and Gilbert Levitt, Sur l’unique ergodicité des 1-formes fermées singulières, Invent. Math. 84 (1986), no. 1, 141 – 156 (French, with English summary). · Zbl 0577.58021 · doi:10.1007/BF01388736 · doi.org
[3] M. Bestvina, M. Feighn; Stable actions of groups on real trees, Invent. Math. 121 (1995), 287–321. · Zbl 0837.20047
[4] F. Bonahon; Geodesic laminations with transverse Hölder distributions. preprint. · Zbl 0887.57018
[5] J. H. Conway and J. C. Lagarias, Tiling with polyominoes and combinatorial group theory, J. Combin. Theory Ser. A 53 (1990), no. 2, 183 – 208. · Zbl 0741.05019 · doi:10.1016/0097-3165(90)90057-4 · doi.org
[6] F. M. Dekking, Recurrent sets, Adv. in Math. 44 (1982), no. 1, 78 – 104. · Zbl 0495.51017 · doi:10.1016/0001-8708(82)90066-4 · doi.org
[7] Albert Fathi, Some compact invariant sets for hyperbolic linear automorphisms of torii [tori], Ergodic Theory Dynam. Systems 8 (1988), no. 2, 191 – 204. · Zbl 0658.58028 · doi:10.1017/S0143385700004417 · doi.org
[8] Travaux de Thurston sur les surfaces, Astérisque, vol. 66, Société Mathématique de France, Paris, 1979 (French). Séminaire Orsay; With an English summary. · Zbl 0731.57001
[9] D. Gaboriau, G. Levitt, F. Paulin; Pseudogroups of isometries and Rips’ theorem on free actions on \(\mathbb {R} \)-trees. Israel J. Math. 87 (1994), 403–428. · Zbl 0824.57001
[10] D. Girault-Beauquier, M. Nivat; Tiling the plane with one tile. Topology and Category Theory from Computer Science, Oxford Univ. Press (1991) 291-334. CMP 92:06 · Zbl 0755.52008
[11] G. Levitt; Propriétés topologiques des \(1\)-formes fermées singulières. preprint.
[12] Michael Keane, Non-ergodic interval exchange transformations, Israel J. Math. 26 (1977), no. 2, 188 – 196. · Zbl 0351.28012 · doi:10.1007/BF03007668 · doi.org
[13] R. Kenyon; Tiling with squares and square-tilable surfaces. preprint, ENS-Lyon 1994.
[14] Richard Kenyon, Rigidity of planar tilings, Invent. Math. 107 (1992), no. 3, 637 – 651. · Zbl 0758.52015 · doi:10.1007/BF01231905 · doi.org
[15] C. Kenyon, R. Kenyon; Tiling polygons with rectangles. Proc. 33rd FOCS, (1992):610-619. · Zbl 0915.05039
[16] Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Springer-Verlag, Berlin-New York, 1977. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89. · Zbl 0368.20023
[17] Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers [John Wiley & Sons, Inc.], New York-London-Sydney, 1966. · Zbl 0138.25604
[18] John W. Morgan and Peter B. Shalen, Free actions of surface groups on \?-trees, Topology 30 (1991), no. 2, 143 – 154. · Zbl 0726.57001 · doi:10.1016/0040-9383(91)90002-L · doi.org
[19] Peter B. Shalen, Dendrology of groups: an introduction, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 265 – 319. · Zbl 0649.20033 · doi:10.1007/978-1-4613-9586-7_4 · doi.org
[20] William P. Thurston, Conway’s tiling groups, Amer. Math. Monthly 97 (1990), no. 8, 757 – 773. · Zbl 0714.52007 · doi:10.2307/2324578 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.