zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Actuarial bridges to dynamic hedging and option pricing. (English) Zbl 0896.62112
Summary: We extend the method of Esscher transforms to changing probability measures in a certain class of stochastic processes that model security prices. According to the fundamental theorem of asset pricing, security prices are calculated as expected discounted values with respect to a (or the) equivalent martingale measure. If the measure is unique, it is obtained by the method of Esscher transforms; if not, the risk-neutral Esscher measure provides a unique and transparent answer, which can be justified if there is a representative investor maximizing his expected utility. We construct self-financing replicating portfolios in the (multidimensional) geometric shifted (compound) Poisson process model, in which the classical (multidimensional) geometric Brownian motion model is a limiting case. With the aid of Esscher transforms, changing numéraire is explained concisely. We also show how certain American type options on two stocks (for example, the perpetual Margrabe option) can be priced. Applying the optional sampling theorem to certain martingales (which resemble the exponential martingale in ruin theory), we obtain several explicit pricing formulas without having to deal with differential equations.

MSC:
62P05Applications of statistics to actuarial sciences and financial mathematics
91G20Derivative securities
91G10Portfolio theory
60G35Signal detection and filtering (stochastic processes)
WorldCat.org
Full Text: DOI
References:
[1] Artzner, P.; Heath, D.: Approximate completeness with multiple martingale measures. Mathematical finance 5, 1-11 (1995) · Zbl 0872.60032
[2] Asmussen, S.: Applied probability and queues. (1987) · Zbl 0624.60098
[3] Aase, K. K.: Premiums in a dynamic model of reinsurance market. Scandinavian actuarial journal, 134-160 (1993) · Zbl 0793.62060
[4] Aase, K. K.: Equilibrium in a reinsurance syndicate: existence, uniqueness and characterization. ASTIN bulletin 23, 185-211 (1993)
[5] Back, K.: Asset pricing for general processes. Journal of mathematical economics 20, 371-395 (1991) · Zbl 0727.90014
[6] Back, K.; Pliska, S. R.: On the fundamental theorem of asset pricing with an infinite state space. Journal of mathematical economics 20, 1-18 (1991) · Zbl 0721.90016
[7] Von Bahr, B.: Ruin probabilities expressed in terms of ladder height distributions. Scandinavian actuarial journal, 190-204 (1974) · Zbl 0321.62103
[8] Bhttacharya, S.; Constantinides, G.: Theory of valuation: frontier of modern financial theory. 1 (1989)
[9] Bick, A.: On the consistency of the Black-Scholes model with a general equilibrium framework. Journal of financial and quantitative analysis 22, 259-275 (1987)
[10] Bick, A.: On viable diffusion price processes of the market portfolio. Journal of finance 45, 673-689 (1990)
[11] Black, F.; Scholes, M.: The pricing of options and corporate liabilities. Journal of political economy 81, 637-659 (1973) · Zbl 1092.91524
[12] Jr., N. L. Bowers; Gerber, H. U.; Hickman, J. C.; Jones, D. A.; Nesbitt, C. J.: Actuarial mathematics. (1986) · Zbl 0634.62107
[13] Borch, K.: The safety loading of reinsurance premiums. Skandinavisk aktuarietidskrift, 163-184 (1960) · Zbl 0122.37603
[14] Borch, K.: Economics of insurance. (1990)
[15] Broadie, M.; Detemple, J.: American capped call options on dividend-paying assets. Review of financial studies 8, 161-191 (1995)
[16] Bu\dot{}hlmann, H.: An economic premium principle. ASTIN bulletin 11, 52-60 (1980)
[17] Bu\dot{}hlmann, H.: The general economic premium principle. ASTIN bulletin 14, 13-21 (1984)
[18] Chevallier, E.; Mu\dot{}ller, H. H.: Risk allocation in capital markets: portfolio insurance, tactical asset allocation and collar strategies. ASTIN bulletin 24, 5-18 (1994)
[19] Christopeit, N.; Musiela, M.: On the existence and characterization of arbitrage-free measure in contingent claim valuation. Stochastic analysis and applications 12, 41-63 (1994) · Zbl 0806.60050
[20] Constantinides, G. M.: Theory of valuation: overview and recent developments. Bhattacharya and constantinides, 1-23 (1989)
[21] Cox, J. C.; Huang, C. -F.: Option pricing theory and its applications. Bhattacharya and constantinides, 1-23 (1989)
[22] Cox, J. C.; Ross, S. A.: The valuation of options for alternative stochastic processes. Journal of financial economics 3, 145-166 (1976)
[23] Dalang, R. C.; Morton, A.; Willinger, W.: Equivalent martingale measure and no-arbitrage in stochastic securities market models. Stochastics and stochastic reports 29, 185-201 (1990) · Zbl 0694.90037
[24] Delbaen, F.: Representing martingale measures when asset prices are continuous and bounded. Mathematical finance 2, 107-130 (1992) · Zbl 0900.90101
[25] Delbaen, F.; Schachermayer, W.: Arbitrage and free lunch with bounded risk for unbounded continuous processes. Mathematical finance 4, 343-348 (1994) · Zbl 0884.90024
[26] Delbaen, F.; Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Mathematische annalen 300, 463-520 (1994) · Zbl 0865.90014
[27] Deprez, D.; Gerber, H. U.: On convex principles of premium calculations. Insurance: mathematics and economics 3, 179-189 (1985) · Zbl 0579.62090
[28] Dybvig, P. H.; Ross, S. A.: Arbitrage. The new palgrave: A dictionary of economics 1, 100-106 (1987)
[29] Elliott, R. J.; Kopp, P. E.: Option pricing and hedge portfolios for Poisson processes. Stochastic analysis and applications 8, 157-167 (1990) · Zbl 0697.90007
[30] Esscher, F.: On the probability function in the collective theory of risk. Skandinavisk aktuarietidskrift 15, 175-195 (1932) · Zbl 0004.36101
[31] Fischer, S.: Call option pricing when the exercise price in uncertain, and the value of index bonds. Journal of finance 33, 169-176 (1978)
[32] Frittelli, M.; Lakner, P.: Almost sure characterization of martingales. Stochastics and stochastic reports 49, 181-190 (1994) · Zbl 0827.60032
[33] Geman, H.; El Karoui, N.; Rochet, J. C.: Changes of numériare, changes of probability measure, and option pricing. Journal of applied probability 32, 443-458 (1995) · Zbl 0829.90007
[34] Gerber, H. U.: Actuarial applications of utility functions. Statistical sciences, vol VI: Actuarial science, 61-63 (1987)
[35] Gerber, H. U.; Michaud, F.; Shiu, E. S. W.: Pricing russian options with compound Poisson process. Transactions of the 25th international congress of actuaries 3, 243-264 (1995)
[36] Gerber, H. U.; Shiu, E. S. W.: Discussion of J.A. Tilley’s valuing American options in a path simulation model. Transactions of the society or actuaries 45, 524-535 (1993)
[37] Gerber, H. U.; Shiu, E. S. W.: Discussion. 141-191 (1994)
[38] Gerber, H. U.; Shiu, E. S. W.: Martingale approach to pricing perpetual American options. ASTIN bulletin 24, 195-220 (1994)
[39] Gerber, H. U.; Shiu, E. S. W.: From perpetual strangles to russian options. Insurance: mathematics and economics 15, 121-126 (1994) · Zbl 0822.60042
[40] Gerber, H. U.; Shiu, E. S. W.: Pricing financial contracts with indexed homogeneous payoff. Bulletin of the swiss association of actuaries 94, 143-166 (1994) · Zbl 0816.90012
[41] Gerber, H. U.; Shiu, E. S. W.: Actuarial approach to option pricing. Actuarial research clearing house 1995, No. no. 1, 301-336 (1995)
[42] Gerber, H. U.; Shiu, E. S. W.: An actuarial Bridge to option pricing. Proceedings of the first bowles symposium (1995)
[43] Gerber, H. U.; Shiu, E. S. W.: Martingale approach to pricing perpetual American options on two stocks. Mathematical finance 6, 303-322 (1996) · Zbl 0919.90009
[44] Harrison, J. M.; Kreps, D. M.: Martingales and arbitrage in multiperiod securities markets. Journal of economic theory 20, 381-408 (1979) · Zbl 0431.90019
[45] Harrison, J. M.; Pliska, S.: Martingales and stochastic integrals in the theory of continuous trading. Stochastic processes and their applications 11, 215-260 (1981) · Zbl 0482.60097
[46] Harrison, J. M.; Pliska, S.: A stochastic calculus model of continuous trading: complete markets. Stochastic processes and their applications 15, 313-316 (1983) · Zbl 0511.60094
[47] He, H.; Leland, H.: On equilibrium asset price processes. Review of financial studies 6, 593-617 (1993)
[48] Heston, S. L.: Invisible parameters in option prices. Journal of finance 48, 933-947 (1993)
[49] Jensen, J. L.: Saddlepoint approximations to the distribution of the total claim amount in some recent risk models. Scandinavian actuarial journal, 154-168 (1991) · Zbl 0780.62081
[50] Jouini, E.; Kallal, H.: Arbitrage in securities markets with short-sales constraints. Mathematical finance 5, 197-232 (1995) · Zbl 0866.90032
[51] Kreps, D. M.: Arbitrage and equilibrium in economics with infinitely many commodities. Journal of mathematical economics 8, 15-35 (1981) · Zbl 0454.90010
[52] Lienhard, M.: Calculation of price equilibria for utility functions of the HARA class. ASTIN bulletin 16, S91-S97 (1986)
[53] Margrabe, W.: The value of an option to exchange one asset for another. Journal of finance 33, 177-186 (1978)
[54] Müller, S. M.: On complete securities markets and the martingale property of securities prices. Economic letters 31, 37-41 (1989)
[55] Naik, V.; Lee, M.: General equilibrium pricing of options on the market portfolio with discontinuous returns. Review of financial studies 3, 493-521 (1990)
[56] Parkinson, M.: Option pricing: the American put. Journal of business 50, 21-36 (1977)
[57] Pedersen, H. W.: Dynamic spanning of contingent claims. Actuarial research clearing house, 1995, No. no. 1, 239-271 (1995)
[58] Philipson, C.: On esscher transforms of distribution functions defining a compound Poisson process for large value of the parameter. Skandinavisk aktuarietidskrift, 226-236 (1963) · Zbl 0129.11902
[59] Rubinstein, M.: The valuation of uncertain income streams and the pricing of options. Bell journal of economics 7, 407-425 (1976)
[60] Samuelson, P. A.: Rational theory of warrant pricing. Industrial management review 6, No. 2, 13-32 (1965)
[61] Schachermayer, W.: A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time. Insurance: mathematics and economics 11, 249-257 (1992) · Zbl 0781.90010
[62] Schachermayer, W.: A counterexample to several problems in the theory of asset pricing. Mathematical finance 3, 217-229 (1992) · Zbl 0884.90050
[63] Schachermayer, W.: Martingale measures for discrete-time processes with infinite horizon. Mathematical finance 4, 25-55 (1994) · Zbl 0893.90017
[64] Schweizer, M.: Martingale densities for general asset prices. Journal of mathematical economics 21, 363-378 (1992) · Zbl 0762.90014
[65] Siegmund, D.: The time until ruin in collective risk theory. Mitteilungen der vereinigung schweizerischer versicherungsmathematiker 75, 157-166 (1975) · Zbl 0388.62091
[66] Sonderman, D.: Reinsurance in arbitrage-free markets. Insurance: mathematics and economics 10, 191-202 (1991) · Zbl 0739.62078
[67] Stapleton, R. C.; Subrahmanyam, M. G.: Risk aversion and the intertemporal behavior of asset prices. Review of financial studies 3, 677-693 (1990)
[68] Stricker, C.: Some remarks on hedging of contingent claims. Stochastic process and optimal control (1993) · Zbl 0823.60039
[69] Wang, S.: The integrability problem of asset prices. Journal of economic theory 59, 199-213 (1993) · Zbl 0768.90008